Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 111926 by ajfour last updated on 05/Sep/20

Commented by ajfour last updated on 05/Sep/20

If △ABC is equilateral with side s,  find radii of the three circles in  terms of s.

$${If}\:\bigtriangleup{ABC}\:{is}\:{equilateral}\:{with}\:{side}\:\boldsymbol{{s}}, \\ $$$${find}\:{radii}\:{of}\:{the}\:{three}\:{circles}\:{in} \\ $$$${terms}\:{of}\:{s}. \\ $$

Answered by mr W last updated on 05/Sep/20

Commented by ajfour last updated on 05/Sep/20

from (ii):  (β+γ)^2 =β^2 +(1−γ)^2 −β(1−γ)   ...(ii)  2βγ=−2γ+1−β+βγ  𝛃=((1−2𝛄)/(1+𝛄))     ....(I)  &   from   γ(1−8β)=4β −1  4𝛃=((1+𝛄)/(1+2𝛄))    ...(II)  ⇒   ((4(1−2γ))/(1+γ))=((1+γ)/(1+2γ))  ⇒  4−16γ^2 =1+2γ+γ^2   ⇒   17γ^2 +2γ−3=0  ⇒  𝛄 = ((2(√(13))−1)/(17))        β=((1−2γ)/(1+γ)) = ((1−(((4(√(13))−2))/(17)))/(1+(((2(√(13))−1))/(17))))      =((19−4(√(13)))/(16+2(√(13))))=(((19−4(√(13)))(16−2(√(13))))/(204))     =((304+104−102(√(13)))/(204)) =((4−(√(13)))/2)     𝛃 =((4−(√(13)))/2)     𝛂=(1/2)−(((4−(√(13))))/2) =(((√(13))−3)/2)     𝛄 = ((2(√(13))−1)/(17))  Thank you very much, mrW Sir!  great solution!

$${from}\:\left({ii}\right): \\ $$$$\left(\beta+\gamma\right)^{\mathrm{2}} =\beta^{\mathrm{2}} +\left(\mathrm{1}−\gamma\right)^{\mathrm{2}} −\beta\left(\mathrm{1}−\gamma\right)\:\:\:...\left({ii}\right) \\ $$$$\mathrm{2}\beta\gamma=−\mathrm{2}\gamma+\mathrm{1}−\beta+\beta\gamma \\ $$$$\boldsymbol{\beta}=\frac{\mathrm{1}−\mathrm{2}\boldsymbol{\gamma}}{\mathrm{1}+\boldsymbol{\gamma}}\:\:\:\:\:....\left({I}\right) \\ $$$$\&\:\:\:{from}\:\:\:\gamma\left(\mathrm{1}−\mathrm{8}\beta\right)=\mathrm{4}\beta\:−\mathrm{1} \\ $$$$\mathrm{4}\boldsymbol{\beta}=\frac{\mathrm{1}+\boldsymbol{\gamma}}{\mathrm{1}+\mathrm{2}\boldsymbol{\gamma}}\:\:\:\:...\left({II}\right) \\ $$$$\Rightarrow\:\:\:\frac{\mathrm{4}\left(\mathrm{1}−\mathrm{2}\gamma\right)}{\mathrm{1}+\gamma}=\frac{\mathrm{1}+\gamma}{\mathrm{1}+\mathrm{2}\gamma} \\ $$$$\Rightarrow\:\:\mathrm{4}−\mathrm{16}\gamma^{\mathrm{2}} =\mathrm{1}+\mathrm{2}\gamma+\gamma^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:\mathrm{17}\gamma^{\mathrm{2}} +\mathrm{2}\gamma−\mathrm{3}=\mathrm{0} \\ $$$$\Rightarrow\:\:\boldsymbol{\gamma}\:=\:\frac{\mathrm{2}\sqrt{\mathrm{13}}−\mathrm{1}}{\mathrm{17}} \\ $$$$\:\:\:\:\:\:\beta=\frac{\mathrm{1}−\mathrm{2}\gamma}{\mathrm{1}+\gamma}\:=\:\frac{\mathrm{1}−\frac{\left(\mathrm{4}\sqrt{\mathrm{13}}−\mathrm{2}\right)}{\mathrm{17}}}{\mathrm{1}+\frac{\left(\mathrm{2}\sqrt{\mathrm{13}}−\mathrm{1}\right)}{\mathrm{17}}} \\ $$$$\:\:\:\:=\frac{\mathrm{19}−\mathrm{4}\sqrt{\mathrm{13}}}{\mathrm{16}+\mathrm{2}\sqrt{\mathrm{13}}}=\frac{\left(\mathrm{19}−\mathrm{4}\sqrt{\mathrm{13}}\right)\left(\mathrm{16}−\mathrm{2}\sqrt{\mathrm{13}}\right)}{\mathrm{204}} \\ $$$$\:\:\:=\frac{\mathrm{304}+\mathrm{104}−\mathrm{102}\sqrt{\mathrm{13}}}{\mathrm{204}}\:=\frac{\mathrm{4}−\sqrt{\mathrm{13}}}{\mathrm{2}} \\ $$$$\:\:\:\boldsymbol{\beta}\:=\frac{\mathrm{4}−\sqrt{\mathrm{13}}}{\mathrm{2}} \\ $$$$\:\:\:\boldsymbol{\alpha}=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\left(\mathrm{4}−\sqrt{\mathrm{13}}\right)}{\mathrm{2}}\:=\frac{\sqrt{\mathrm{13}}−\mathrm{3}}{\mathrm{2}} \\ $$$$\:\:\:\boldsymbol{\gamma}\:=\:\frac{\mathrm{2}\sqrt{\mathrm{13}}−\mathrm{1}}{\mathrm{17}} \\ $$$$\mathcal{T}{hank}\:{you}\:{very}\:{much},\:{mrW}\:{Sir}! \\ $$$${great}\:{solution}! \\ $$$$ \\ $$

Commented by mr W last updated on 06/Sep/20

wow! i didn′t expect that we can get  the exact solution. thanks sir!

$${wow}!\:{i}\:{didn}'{t}\:{expect}\:{that}\:{we}\:{can}\:{get} \\ $$$${the}\:{exact}\:{solution}.\:{thanks}\:{sir}! \\ $$

Commented by mr W last updated on 05/Sep/20

a+b=(s/2)  α+β=(1/2)   ...(i)    BD=s−c  FD=b+c  FD^2 =BF^2 +BD^2 −2×BF×BD×cos ∠B  (b+c)^2 =b^2 +(s−c)^2 −b(s−c)  (β+γ)^2 =β^2 +(1−γ)^2 −β(1−γ)   ...(ii)    ED=a+c  (a+c)^2 =(a+2b)^2 +(s−c)^2 −(a+2b)(s−c)  ((s/2)−b+c)^2 =((s/2)+b)^2 +(s−c)^2 −((s/2)+b)(s−c)  ((1/2)−β+γ)^2 =((1/2)+β)^2 +(1−γ)^2 −((1/2)+β)(1−γ)   ...(iii)    (iii)−(ii):  γ(1−8β)=4β −1  ⇒γ=((4β−1)/(1−8β))    ⇒β≈0.19722=(b/s)  ⇒γ≈0.36541=(c/s)  ⇒α≈0.30378=(a/s)

$${a}+{b}=\frac{{s}}{\mathrm{2}} \\ $$$$\alpha+\beta=\frac{\mathrm{1}}{\mathrm{2}}\:\:\:...\left({i}\right) \\ $$$$ \\ $$$${BD}={s}−{c} \\ $$$${FD}={b}+{c} \\ $$$${FD}^{\mathrm{2}} ={BF}^{\mathrm{2}} +{BD}^{\mathrm{2}} −\mathrm{2}×{BF}×{BD}×\mathrm{cos}\:\angle{B} \\ $$$$\left({b}+{c}\right)^{\mathrm{2}} ={b}^{\mathrm{2}} +\left({s}−{c}\right)^{\mathrm{2}} −{b}\left({s}−{c}\right) \\ $$$$\left(\beta+\gamma\right)^{\mathrm{2}} =\beta^{\mathrm{2}} +\left(\mathrm{1}−\gamma\right)^{\mathrm{2}} −\beta\left(\mathrm{1}−\gamma\right)\:\:\:...\left({ii}\right) \\ $$$$ \\ $$$${ED}={a}+{c} \\ $$$$\left({a}+{c}\right)^{\mathrm{2}} =\left({a}+\mathrm{2}{b}\right)^{\mathrm{2}} +\left({s}−{c}\right)^{\mathrm{2}} −\left({a}+\mathrm{2}{b}\right)\left({s}−{c}\right) \\ $$$$\left(\frac{{s}}{\mathrm{2}}−{b}+{c}\right)^{\mathrm{2}} =\left(\frac{{s}}{\mathrm{2}}+{b}\right)^{\mathrm{2}} +\left({s}−{c}\right)^{\mathrm{2}} −\left(\frac{{s}}{\mathrm{2}}+{b}\right)\left({s}−{c}\right) \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{2}}−\beta+\gamma\right)^{\mathrm{2}} =\left(\frac{\mathrm{1}}{\mathrm{2}}+\beta\right)^{\mathrm{2}} +\left(\mathrm{1}−\gamma\right)^{\mathrm{2}} −\left(\frac{\mathrm{1}}{\mathrm{2}}+\beta\right)\left(\mathrm{1}−\gamma\right)\:\:\:...\left({iii}\right) \\ $$$$ \\ $$$$\left({iii}\right)−\left({ii}\right): \\ $$$$\gamma\left(\mathrm{1}−\mathrm{8}\beta\right)=\mathrm{4}\beta\:−\mathrm{1} \\ $$$$\Rightarrow\gamma=\frac{\mathrm{4}\beta−\mathrm{1}}{\mathrm{1}−\mathrm{8}\beta} \\ $$$$ \\ $$$$\Rightarrow\beta\approx\mathrm{0}.\mathrm{19722}=\frac{{b}}{{s}} \\ $$$$\Rightarrow\gamma\approx\mathrm{0}.\mathrm{36541}=\frac{{c}}{{s}} \\ $$$$\Rightarrow\alpha\approx\mathrm{0}.\mathrm{30378}=\frac{{a}}{{s}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com