Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 111965 by mnjuly1970 last updated on 05/Sep/20

      ....advanced  calculus...  evaluate:        i:: ∫_0 ^( 1) xH_x dx =???         ii::Σ_(n=1 ) ^∞ (H_n /(n^2 2^(n ) )) =???       iii:: ∫_0 ^( 1) ((ln(((x+1))^(1/3) ))/((x+1)(x+2)))=???           m.n. july 1970...#

$$\:\:\:\:\:\:....{advanced}\:\:{calculus}... \\ $$$${evaluate}: \\ $$$$ \\ $$$$\:\:\:\:{i}::\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {xH}_{{x}} {dx}\:=???\:\: \\ $$$$\:\:\:\:\:{ii}::\underset{{n}=\mathrm{1}\:} {\overset{\infty} {\sum}}\frac{{H}_{{n}} }{{n}^{\mathrm{2}} \mathrm{2}^{{n}\:} }\:=??? \\ $$$$\:\:\:\:\:{iii}::\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}\right)}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)}=??? \\ $$$$\:\:\:\:\:\:\:\:\:{m}.{n}.\:{july}\:\mathrm{1970}...# \\ $$

Answered by mindispower last updated on 05/Sep/20

∫_0 ^1 ((ln(x+1))/((x+1)(x+2)))dx  ∫_0 ^1 ((ln(x+1))/(x+1))dx_(=A) −∫_0 ^1 ((ln(x+1))/(x+2))dx_(=B)   A=(1/2)[ln^2 (x+1)]_0 ^1 =((ln^2 (2))/2)  B=−[ln(x+1)ln(x+2)]_0 ^1 +∫_0 ^1 ((ln(x+2))/(x+1))dx  By part and x+1=u⇒  B=−ln(2)ln(3)+∫_1 ^2 ((ln(u+1))/u)du  u=−y⇒B=−ln(2)ln(3)+∫_(−1) ^(−2) ((ln(1−y))/y)dy  B=−ln(2)ln(3)−[−∫_(−1) ^(−2) ((ln(1−y))/y)dy]  =−ln(2)ln(3)−Li_2 (−2)+Li_2 (−1)  Li_2 (z)=Σ(z^k /k^2 )  Li_2 (−1)=Σ_(k≥1) (1/(4k^2 ))−Σ_(k≥0) (1/((2k+1)^2 ))=((ζ(2))/4)−{ζ(2)−((ζ(2))/4)}  =−(1/2)=−(1/2)ζ(2)=−(π^2 /(12))  ∫_0 ^1 ((ln(x+1))/((x+1)(x+2)))dx=A+B=((ln^2 (2))/2)−ln(2)ln(3)−Li_2 (−2)−(π^2 /(12))  =−Li_2 (−2)−(1/2)ln(2)ln((2/9))−(π^2 /(12))

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}+\mathrm{1}\right)}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)}{dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}+\mathrm{1}\right)}{{x}+\mathrm{1}}{dx}_{={A}} −\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}+\mathrm{1}\right)}{{x}+\mathrm{2}}{d}\underset{={B}} {{x}} \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{2}}\left[{ln}^{\mathrm{2}} \left({x}+\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}} \\ $$$${B}=−\left[{ln}\left({x}+\mathrm{1}\right){ln}\left({x}+\mathrm{2}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} +\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}+\mathrm{2}\right)}{{x}+\mathrm{1}}{dx} \\ $$$${By}\:{part}\:{and}\:{x}+\mathrm{1}={u}\Rightarrow \\ $$$${B}=−{ln}\left(\mathrm{2}\right){ln}\left(\mathrm{3}\right)+\int_{\mathrm{1}} ^{\mathrm{2}} \frac{{ln}\left({u}+\mathrm{1}\right)}{{u}}{du} \\ $$$${u}=−{y}\Rightarrow{B}=−{ln}\left(\mathrm{2}\right){ln}\left(\mathrm{3}\right)+\int_{−\mathrm{1}} ^{−\mathrm{2}} \frac{{ln}\left(\mathrm{1}−{y}\right)}{{y}}{dy} \\ $$$${B}=−{ln}\left(\mathrm{2}\right){ln}\left(\mathrm{3}\right)−\left[−\int_{−\mathrm{1}} ^{−\mathrm{2}} \frac{{ln}\left(\mathrm{1}−{y}\right)}{{y}}{dy}\right] \\ $$$$=−{ln}\left(\mathrm{2}\right){ln}\left(\mathrm{3}\right)−{Li}_{\mathrm{2}} \left(−\mathrm{2}\right)+{Li}_{\mathrm{2}} \left(−\mathrm{1}\right) \\ $$$${Li}_{\mathrm{2}} \left({z}\right)=\Sigma\frac{{z}^{{k}} }{{k}^{\mathrm{2}} } \\ $$$${Li}_{\mathrm{2}} \left(−\mathrm{1}\right)=\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{\mathrm{4}{k}^{\mathrm{2}} }−\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left(\mathrm{2}{k}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\zeta\left(\mathrm{2}\right)}{\mathrm{4}}−\left\{\zeta\left(\mathrm{2}\right)−\frac{\zeta\left(\mathrm{2}\right)}{\mathrm{4}}\right\} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}=−\frac{\mathrm{1}}{\mathrm{2}}\zeta\left(\mathrm{2}\right)=−\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}+\mathrm{1}\right)}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)}{dx}={A}+{B}=\frac{{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}}−{ln}\left(\mathrm{2}\right){ln}\left(\mathrm{3}\right)−{Li}_{\mathrm{2}} \left(−\mathrm{2}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$$$=−{Li}_{\mathrm{2}} \left(−\mathrm{2}\right)−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\right){ln}\left(\frac{\mathrm{2}}{\mathrm{9}}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by mathdave last updated on 06/Sep/20

mistake from the first step

$${mistake}\:{from}\:{the}\:{first}\:{step} \\ $$

Commented by mathdave last updated on 06/Sep/20

it supposed to be something like this  ∫_0 ^1 ((ln(1+x)^(1/3) )/((1+x)(2+x)))dx=(1/3)∫_0 ^1 ((ln(1+x))/((1+x)))dx−(1/3)∫_0 ^1 ((ln(1+x))/((2+x)))dx

$${it}\:{supposed}\:{to}\:{be}\:{something}\:{like}\:{this} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} }{\left(\mathrm{1}+{x}\right)\left(\mathrm{2}+{x}\right)}{dx}=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}+{x}\right)}{\left(\mathrm{1}+{x}\right)}{dx}−\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}+{x}\right)}{\left(\mathrm{2}+{x}\right)}{dx} \\ $$

Commented by mindispower last updated on 06/Sep/20

i have starte withe ∫_0 ^1 ((ln(x+1))/((1+x)(2+x)))dx  just because i dont want write evrey steps (1/3)

$${i}\:{have}\:{starte}\:{withe}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}+\mathrm{1}\right)}{\left(\mathrm{1}+{x}\right)\left(\mathrm{2}+{x}\right)}{dx} \\ $$$${just}\:{because}\:{i}\:{dont}\:{want}\:{write}\:{evrey}\:{steps}\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$ \\ $$

Commented by mathdave last updated on 06/Sep/20

aside that u dont wamna used  everything when getting ur final  answer (1/3) wasnt reflecting there

$${aside}\:{that}\:{u}\:{dont}\:{wamna}\:{used} \\ $$$${everything}\:{when}\:{getting}\:{ur}\:{final} \\ $$$${answer}\:\frac{\mathrm{1}}{\mathrm{3}}\:{wasnt}\:{reflecting}\:{there} \\ $$

Commented by mnjuly1970 last updated on 06/Sep/20

thank you so much  for you  carefulness...

$${thank}\:{you}\:{so}\:{much}\:\:{for}\:{you} \\ $$$${carefulness}... \\ $$

Commented by mnjuly1970 last updated on 06/Sep/20

thank you so much for your   effort .grateful....

$${thank}\:{you}\:{so}\:{much}\:{for}\:{your}\: \\ $$$${effort}\:.{grateful}.... \\ $$

Commented by Tawa11 last updated on 06/Sep/21

grest sir

$$\mathrm{grest}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com