Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 111988 by ajfour last updated on 05/Sep/20

Commented by ajfour last updated on 05/Sep/20

If △ABC is equilateral with side s,  find x-coordinate of point A in   terms of s.

$${If}\:\bigtriangleup{ABC}\:{is}\:{equilateral}\:{with}\:{side}\:\boldsymbol{{s}}, \\ $$$${find}\:{x}-{coordinate}\:{of}\:{point}\:{A}\:{in}\: \\ $$$${terms}\:{of}\:{s}. \\ $$

Answered by mr W last updated on 06/Sep/20

center of equilateral D(h,k)  A(a,0)  R=(2/3)×(((√3)s)/2)=(s/( (√3)))  (a−h)^2 +k^2 =R^2 =(s^2 /3)  ⇒a=h+(√((s^2 /3)−k^2 ))  x_B =h+(a−h)cos 120°−(0−k)sin 120°  =h−(1/2)(a−h)+((√3)/2)k  =(1/2)(3h+(√3)k−a)  y_B =k+(a−h)sin 120°+(0−k)cos 120°  =k+((√3)/2)(a−h)+(1/2)k  =(1/2)(−(√3)h+3k+(√3)a)  y_B =x_B ^2   (1/2)(−(√3)h+3k+(√3)a)=(1/4)(3h+(√3)k−a)^2   ⇒2(−(√3)h+3k+(√3)a)=(3h+(√3)k−a)^2   ⇒2(3k+(√(s^2 −3k^2 )))=(2h+(√3)k−(√((s^2 /3)−k^2 )))^2    ...(i)    x_C =h+(a−h)cos 240°−(0−k)sin 240°  =h−(1/2)(a−h)+((√3)/2)(0−k)  =(1/2)(3h−(√3)k−a)  y_C =k+(a−h)sin 240°+(0−k)cos 240°  =k−((√3)/2)(a−h)−(1/2)(0−k)  =(1/2)((√3)h+3k−(√3)a)  y_C =x_C ^2   (1/2)((√3)h+3k−(√3)a)=(1/4)(3h−(√3)k−a)^2   ⇒2((√3)h+3k−(√3)a)=(3h−(√3)k−a)^2   ⇒2(3k−(√(s^2 −3k^2 )))=(2h−(√3)k−(√((s^2 /3)−k^2 )))^2    ..(ii)  we get h and k from (i) and (ii).    from (i):  2h=(√(2(3k+(√(s^2 −3k^2 )))))−(√3)k+(√((s^2 /3)−k^2 ))  from (ii):  2h=(√(2(3k−(√(s^2 −3k^2 )))))+(√3)k+(√((s^2 /3)−k^2 ))  (√(2(3k+(√(s^2 −3k^2 )))))−(√3)k=(√(2(3k−(√(s^2 −3k^2 )))))+(√3)k  ⇒(√(2(3k+(√(s^2 −3k^2 )))))−(√(2(3k−(√(s^2 −3k^2 )))))=2(√3)k    solution possible for s≤≈4.75

$${center}\:{of}\:{equilateral}\:{D}\left({h},{k}\right) \\ $$$${A}\left({a},\mathrm{0}\right) \\ $$$${R}=\frac{\mathrm{2}}{\mathrm{3}}×\frac{\sqrt{\mathrm{3}}{s}}{\mathrm{2}}=\frac{{s}}{\:\sqrt{\mathrm{3}}} \\ $$$$\left({a}−{h}\right)^{\mathrm{2}} +{k}^{\mathrm{2}} ={R}^{\mathrm{2}} =\frac{{s}^{\mathrm{2}} }{\mathrm{3}} \\ $$$$\Rightarrow{a}={h}+\sqrt{\frac{{s}^{\mathrm{2}} }{\mathrm{3}}−{k}^{\mathrm{2}} } \\ $$$${x}_{{B}} ={h}+\left({a}−{h}\right)\mathrm{cos}\:\mathrm{120}°−\left(\mathrm{0}−{k}\right)\mathrm{sin}\:\mathrm{120}° \\ $$$$={h}−\frac{\mathrm{1}}{\mathrm{2}}\left({a}−{h}\right)+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{k} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{3}{h}+\sqrt{\mathrm{3}}{k}−{a}\right) \\ $$$${y}_{{B}} ={k}+\left({a}−{h}\right)\mathrm{sin}\:\mathrm{120}°+\left(\mathrm{0}−{k}\right)\mathrm{cos}\:\mathrm{120}° \\ $$$$={k}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left({a}−{h}\right)+\frac{\mathrm{1}}{\mathrm{2}}{k} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(−\sqrt{\mathrm{3}}{h}+\mathrm{3}{k}+\sqrt{\mathrm{3}}{a}\right) \\ $$$${y}_{{B}} ={x}_{{B}} ^{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(−\sqrt{\mathrm{3}}{h}+\mathrm{3}{k}+\sqrt{\mathrm{3}}{a}\right)=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{3}{h}+\sqrt{\mathrm{3}}{k}−{a}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2}\left(−\sqrt{\mathrm{3}}{h}+\mathrm{3}{k}+\sqrt{\mathrm{3}}{a}\right)=\left(\mathrm{3}{h}+\sqrt{\mathrm{3}}{k}−{a}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2}\left(\mathrm{3}{k}+\sqrt{{s}^{\mathrm{2}} −\mathrm{3}{k}^{\mathrm{2}} }\right)=\left(\mathrm{2}{h}+\sqrt{\mathrm{3}}{k}−\sqrt{\frac{{s}^{\mathrm{2}} }{\mathrm{3}}−{k}^{\mathrm{2}} }\right)^{\mathrm{2}} \:\:\:...\left({i}\right) \\ $$$$ \\ $$$${x}_{{C}} ={h}+\left({a}−{h}\right)\mathrm{cos}\:\mathrm{240}°−\left(\mathrm{0}−{k}\right)\mathrm{sin}\:\mathrm{240}° \\ $$$$={h}−\frac{\mathrm{1}}{\mathrm{2}}\left({a}−{h}\right)+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left(\mathrm{0}−{k}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{3}{h}−\sqrt{\mathrm{3}}{k}−{a}\right) \\ $$$${y}_{{C}} ={k}+\left({a}−{h}\right)\mathrm{sin}\:\mathrm{240}°+\left(\mathrm{0}−{k}\right)\mathrm{cos}\:\mathrm{240}° \\ $$$$={k}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left({a}−{h}\right)−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{0}−{k}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\mathrm{3}}{h}+\mathrm{3}{k}−\sqrt{\mathrm{3}}{a}\right) \\ $$$${y}_{{C}} ={x}_{{C}} ^{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\mathrm{3}}{h}+\mathrm{3}{k}−\sqrt{\mathrm{3}}{a}\right)=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{3}{h}−\sqrt{\mathrm{3}}{k}−{a}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2}\left(\sqrt{\mathrm{3}}{h}+\mathrm{3}{k}−\sqrt{\mathrm{3}}{a}\right)=\left(\mathrm{3}{h}−\sqrt{\mathrm{3}}{k}−{a}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2}\left(\mathrm{3}{k}−\sqrt{{s}^{\mathrm{2}} −\mathrm{3}{k}^{\mathrm{2}} }\right)=\left(\mathrm{2}{h}−\sqrt{\mathrm{3}}{k}−\sqrt{\frac{{s}^{\mathrm{2}} }{\mathrm{3}}−{k}^{\mathrm{2}} }\right)^{\mathrm{2}} \:\:\:..\left({ii}\right) \\ $$$${we}\:{get}\:{h}\:{and}\:{k}\:{from}\:\left({i}\right)\:{and}\:\left({ii}\right). \\ $$$$ \\ $$$${from}\:\left({i}\right): \\ $$$$\mathrm{2}{h}=\sqrt{\mathrm{2}\left(\mathrm{3}{k}+\sqrt{{s}^{\mathrm{2}} −\mathrm{3}{k}^{\mathrm{2}} }\right)}−\sqrt{\mathrm{3}}{k}+\sqrt{\frac{{s}^{\mathrm{2}} }{\mathrm{3}}−{k}^{\mathrm{2}} } \\ $$$${from}\:\left({ii}\right): \\ $$$$\mathrm{2}{h}=\sqrt{\mathrm{2}\left(\mathrm{3}{k}−\sqrt{{s}^{\mathrm{2}} −\mathrm{3}{k}^{\mathrm{2}} }\right)}+\sqrt{\mathrm{3}}{k}+\sqrt{\frac{{s}^{\mathrm{2}} }{\mathrm{3}}−{k}^{\mathrm{2}} } \\ $$$$\sqrt{\mathrm{2}\left(\mathrm{3}{k}+\sqrt{{s}^{\mathrm{2}} −\mathrm{3}{k}^{\mathrm{2}} }\right)}−\sqrt{\mathrm{3}}{k}=\sqrt{\mathrm{2}\left(\mathrm{3}{k}−\sqrt{{s}^{\mathrm{2}} −\mathrm{3}{k}^{\mathrm{2}} }\right)}+\sqrt{\mathrm{3}}{k} \\ $$$$\Rightarrow\sqrt{\mathrm{2}\left(\mathrm{3}{k}+\sqrt{{s}^{\mathrm{2}} −\mathrm{3}{k}^{\mathrm{2}} }\right)}−\sqrt{\mathrm{2}\left(\mathrm{3}{k}−\sqrt{{s}^{\mathrm{2}} −\mathrm{3}{k}^{\mathrm{2}} }\right)}=\mathrm{2}\sqrt{\mathrm{3}}{k} \\ $$$$ \\ $$$${solution}\:{possible}\:{for}\:{s}\leqslant\approx\mathrm{4}.\mathrm{75} \\ $$

Commented by mr W last updated on 06/Sep/20

Commented by mr W last updated on 06/Sep/20

Commented by mr W last updated on 06/Sep/20

Answered by ajfour last updated on 06/Sep/20

Let   s=2p(√3)  A(a, 0)  (a/p)=3cos θ{1+tan^2 θ−tan θ(√(tan^2 θ−(1/3))) }  and θ is obtained from  tan θ+(√(tan^2 θ−(1/3)))=2psin θtan θ  or  (1/(sin^2 θ))+3(2psin θ−1)^2 =4       ★

$${Let}\:\:\:{s}=\mathrm{2}{p}\sqrt{\mathrm{3}} \\ $$$${A}\left({a},\:\mathrm{0}\right) \\ $$$$\frac{{a}}{{p}}=\mathrm{3cos}\:\theta\left\{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \theta−\mathrm{tan}\:\theta\sqrt{\mathrm{tan}\:^{\mathrm{2}} \theta−\frac{\mathrm{1}}{\mathrm{3}}}\:\right\} \\ $$$${and}\:\theta\:{is}\:{obtained}\:{from} \\ $$$$\mathrm{tan}\:\theta+\sqrt{\mathrm{tan}\:^{\mathrm{2}} \theta−\frac{\mathrm{1}}{\mathrm{3}}}=\mathrm{2}{p}\mathrm{sin}\:\theta\mathrm{tan}\:\theta \\ $$$${or} \\ $$$$\frac{\mathrm{1}}{\mathrm{sin}\:^{\mathrm{2}} \theta}+\mathrm{3}\left(\mathrm{2}{p}\mathrm{sin}\:\theta−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{4}\:\:\:\:\:\:\:\bigstar \\ $$

Commented by ajfour last updated on 06/Sep/20

Commented by ajfour last updated on 06/Sep/20

Commented by ajfour last updated on 06/Sep/20

p=1, s=2(√3) , a=2(√3) , θ=30°

$${p}=\mathrm{1},\:{s}=\mathrm{2}\sqrt{\mathrm{3}}\:,\:{a}=\mathrm{2}\sqrt{\mathrm{3}}\:,\:\theta=\mathrm{30}° \\ $$

Commented by mr W last updated on 06/Sep/20

nice solution sir!

$${nice}\:{solution}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com