Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 112060 by Aina Samuel Temidayo last updated on 06/Sep/20

In a trapezium, ABCD, with AB  parallel to CD. If M is the midpoint of  line segment AD and P is a point on  line BC such that MP is perpendicular  to BC. Show that, we need only the  lengths of line segments MP and BC  to calculate the area ABCD.

$$\mathrm{In}\:\mathrm{a}\:\mathrm{trapezium},\:\mathrm{ABCD},\:\mathrm{with}\:\mathrm{AB} \\ $$$$\mathrm{parallel}\:\mathrm{to}\:\mathrm{CD}.\:\mathrm{If}\:\mathrm{M}\:\mathrm{is}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of} \\ $$$$\mathrm{line}\:\mathrm{segment}\:\mathrm{AD}\:\mathrm{and}\:\mathrm{P}\:\mathrm{is}\:\mathrm{a}\:\mathrm{point}\:\mathrm{on} \\ $$$$\mathrm{line}\:\mathrm{BC}\:\mathrm{such}\:\mathrm{that}\:\mathrm{MP}\:\mathrm{is}\:\mathrm{perpendicular} \\ $$$$\mathrm{to}\:\mathrm{BC}.\:\mathrm{Show}\:\mathrm{that},\:\mathrm{we}\:\mathrm{need}\:\mathrm{only}\:\mathrm{the} \\ $$$$\mathrm{lengths}\:\mathrm{of}\:\mathrm{line}\:\mathrm{segments}\:\mathrm{MP}\:\mathrm{and}\:\mathrm{BC} \\ $$$$\mathrm{to}\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{area}\:\mathrm{ABCD}. \\ $$

Answered by 1549442205PVT last updated on 06/Sep/20

Commented by Aina Samuel Temidayo last updated on 06/Sep/20

Thanks. Please what about the  solution?

$$\mathrm{Thanks}.\:\mathrm{Please}\:\mathrm{what}\:\mathrm{about}\:\mathrm{the} \\ $$$$\mathrm{solution}? \\ $$

Commented by 1549442205PVT last updated on 06/Sep/20

Denote by G midpoint of BC   Suppose known MP=m,BC=a,then  S_(BMC) =((BC.MP)/2)=((am)/2).We prove that  S_(ABCD) =2S_(BMC) .Indeed,Denote byI,H  orthogonal projections of points B and  C on MG respectively.Then S_(CMG) =  ((MG.CH)/2),S_(BMG) =((MG.BI)/2)  S_(BMC) =S_(CMG) +S_(BMG) =((MG(BI+CH))/2)(1)  Since M,G are midpoints of BC and  AD ,MG is midline of the trapezium  ABCD.Since AB//CD,BI+CH equal  to altitude h of the trapezium .  Therefore,MG=((AB+CD)/2),BI+CH=h  and S_(ABCD) =(((AB+CD).h)/2)=MG.h(2)  From (1) and (2) we infer  S_(ABCD) =2S_(BMC) =a.m .That thing show  that only need know the length of the  line segments BC and MP we can  calculate the area of the trapezium

$$\mathrm{Denote}\:\mathrm{by}\:\mathrm{G}\:\mathrm{midpoint}\:\mathrm{of}\:\mathrm{BC}\: \\ $$$$\mathrm{Suppose}\:\mathrm{known}\:\mathrm{MP}=\mathrm{m},\mathrm{BC}=\mathrm{a},\mathrm{then} \\ $$$$\mathrm{S}_{\mathrm{BMC}} =\frac{\mathrm{BC}.\mathrm{MP}}{\mathrm{2}}=\frac{\mathrm{am}}{\mathrm{2}}.\mathrm{We}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{S}_{\mathrm{ABCD}} =\mathrm{2S}_{\mathrm{BMC}} .\mathrm{Indeed},\mathrm{Denote}\:\mathrm{byI},\mathrm{H} \\ $$$$\mathrm{orthogonal}\:\mathrm{projections}\:\mathrm{of}\:\mathrm{points}\:\mathrm{B}\:\mathrm{and} \\ $$$$\mathrm{C}\:\mathrm{on}\:\mathrm{MG}\:\mathrm{respectively}.\mathrm{Then}\:\mathrm{S}_{\mathrm{CMG}} = \\ $$$$\frac{\mathrm{MG}.\mathrm{CH}}{\mathrm{2}},\mathrm{S}_{\mathrm{BMG}} =\frac{\mathrm{MG}.\mathrm{BI}}{\mathrm{2}} \\ $$$$\mathrm{S}_{\mathrm{BMC}} =\mathrm{S}_{\mathrm{CMG}} +\mathrm{S}_{\mathrm{BMG}} =\frac{\mathrm{MG}\left(\mathrm{BI}+\mathrm{CH}\right)}{\mathrm{2}}\left(\mathrm{1}\right) \\ $$$$\mathrm{Since}\:\mathrm{M},\mathrm{G}\:\mathrm{are}\:\mathrm{midpoints}\:\mathrm{of}\:\mathrm{BC}\:\mathrm{and} \\ $$$$\mathrm{AD}\:,\mathrm{MG}\:\mathrm{is}\:\mathrm{midline}\:\mathrm{of}\:\mathrm{the}\:\mathrm{trapezium} \\ $$$$\mathrm{ABCD}.\mathrm{Since}\:\mathrm{AB}//\mathrm{CD},\mathrm{BI}+\mathrm{CH}\:\mathrm{equal} \\ $$$$\mathrm{to}\:\mathrm{altitude}\:\mathrm{h}\:\mathrm{of}\:\mathrm{the}\:\mathrm{trapezium}\:. \\ $$$$\mathrm{Therefore},\mathrm{MG}=\frac{\mathrm{AB}+\mathrm{CD}}{\mathrm{2}},\mathrm{BI}+\mathrm{CH}=\mathrm{h} \\ $$$$\mathrm{and}\:\mathrm{S}_{\mathrm{ABCD}} =\frac{\left(\mathrm{AB}+\mathrm{CD}\right).\mathrm{h}}{\mathrm{2}}=\mathrm{MG}.\mathrm{h}\left(\mathrm{2}\right) \\ $$$$\mathrm{From}\:\left(\mathrm{1}\right)\:\mathrm{and}\:\left(\mathrm{2}\right)\:\mathrm{we}\:\mathrm{infer} \\ $$$$\mathrm{S}_{\mathrm{ABCD}} =\mathrm{2S}_{\mathrm{BMC}} =\mathrm{a}.\mathrm{m}\:.\mathrm{That}\:\mathrm{thing}\:\mathrm{show} \\ $$$$\mathrm{that}\:\mathrm{only}\:\mathrm{need}\:\mathrm{know}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{line}\:\mathrm{segments}\:\mathrm{BC}\:\mathrm{and}\:\mathrm{MP}\:\mathrm{we}\:\mathrm{can} \\ $$$$\mathrm{calculate}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{trapezium} \\ $$

Commented by Aina Samuel Temidayo last updated on 06/Sep/20

Please check my other questions out. I  need help please.

$$\mathrm{Please}\:\mathrm{check}\:\mathrm{my}\:\mathrm{other}\:\mathrm{questions}\:\mathrm{out}.\:\mathrm{I} \\ $$$$\mathrm{need}\:\mathrm{help}\:\mathrm{please}. \\ $$

Commented by Aina Samuel Temidayo last updated on 06/Sep/20

Please how did you know  S_(ABCD ) =2S_(BMC) ?

$$\mathrm{Please}\:\mathrm{how}\:\mathrm{did}\:\mathrm{you}\:\mathrm{know} \\ $$$$\mathrm{S}_{\mathrm{ABCD}\:} =\mathrm{2S}_{\mathrm{BMC}} ? \\ $$

Commented by 1549442205PVT last updated on 06/Sep/20

I proved above!It follows from(1)&(2)

$$\mathrm{I}\:\mathrm{proved}\:\mathrm{above}!\mathrm{It}\:\mathrm{follows}\:\mathrm{from}\left(\mathrm{1}\right)\&\left(\mathrm{2}\right) \\ $$

Commented by Aina Samuel Temidayo last updated on 06/Sep/20

Ok. Thanks. Please check the  question I just posted.

$$\mathrm{Ok}.\:\mathrm{Thanks}.\:\mathrm{Please}\:\mathrm{check}\:\mathrm{the} \\ $$$$\mathrm{question}\:\mathrm{I}\:\mathrm{just}\:\mathrm{posted}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com