Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 112096 by mathdave last updated on 06/Sep/20

Answered by mr W last updated on 06/Sep/20

say ab=k^2   ((a+b)/2)−k=1  ⇒a+b=2(k+1)  a, b are roots of  z^2 −2(k+1)z+k^2 =0  a, b=(k+1)±(√(2k+1))  2k+1=m^2   2k=(m−1)(m+1)  m must be odd: m=2n+1  2k=2n(2n+2)  ⇒k=2n(n+1)  a,b=2n(n+1)+1±(2n+1)  say, a<b,  a=2n(n+1)+1−(2n+1)=2n^2   b=2n(n+1)+1+(2n+1)=2(n+1)^2   general solution:   { ((a=2n^2 )),((b=2(n+1)^2 )) :}  with n∈N

$${say}\:{ab}={k}^{\mathrm{2}} \\ $$$$\frac{{a}+{b}}{\mathrm{2}}−{k}=\mathrm{1} \\ $$$$\Rightarrow{a}+{b}=\mathrm{2}\left({k}+\mathrm{1}\right) \\ $$$${a},\:{b}\:{are}\:{roots}\:{of} \\ $$$${z}^{\mathrm{2}} −\mathrm{2}\left({k}+\mathrm{1}\right){z}+{k}^{\mathrm{2}} =\mathrm{0} \\ $$$${a},\:{b}=\left({k}+\mathrm{1}\right)\pm\sqrt{\mathrm{2}{k}+\mathrm{1}} \\ $$$$\mathrm{2}{k}+\mathrm{1}={m}^{\mathrm{2}} \\ $$$$\mathrm{2}{k}=\left({m}−\mathrm{1}\right)\left({m}+\mathrm{1}\right) \\ $$$${m}\:{must}\:{be}\:{odd}:\:{m}=\mathrm{2}{n}+\mathrm{1} \\ $$$$\mathrm{2}{k}=\mathrm{2}{n}\left(\mathrm{2}{n}+\mathrm{2}\right) \\ $$$$\Rightarrow{k}=\mathrm{2}{n}\left({n}+\mathrm{1}\right) \\ $$$${a},{b}=\mathrm{2}{n}\left({n}+\mathrm{1}\right)+\mathrm{1}\pm\left(\mathrm{2}{n}+\mathrm{1}\right) \\ $$$${say},\:{a}<{b}, \\ $$$${a}=\mathrm{2}{n}\left({n}+\mathrm{1}\right)+\mathrm{1}−\left(\mathrm{2}{n}+\mathrm{1}\right)=\mathrm{2}{n}^{\mathrm{2}} \\ $$$${b}=\mathrm{2}{n}\left({n}+\mathrm{1}\right)+\mathrm{1}+\left(\mathrm{2}{n}+\mathrm{1}\right)=\mathrm{2}\left({n}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$${general}\:{solution}: \\ $$$$\begin{cases}{{a}=\mathrm{2}{n}^{\mathrm{2}} }\\{{b}=\mathrm{2}\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\end{cases}\:\:{with}\:{n}\in\mathbb{N} \\ $$

Commented by Tawa11 last updated on 06/Sep/21

great sir

$$\mathrm{great}\:\mathrm{sir} \\ $$

Answered by 1549442205PVT last updated on 06/Sep/20

((a+b)/2)−(√(ab)) =1⇔a+b−2=2(√(ab))  a^2 +b^2 +4+2ab−4a−4b=4ab  a^2 −2(b+2)a+b^2 −4b+4=0   (1)  We look at this is a quadratic equation  with respect to unknown a.Then  Δ′=(b+2)^2 −(b−2)^2 =8b.  The equation (1) has integer roots ,so  (√(Δ′))=m^2 ⇒8b=m^2 ⇒b=2u^2 .Replace  into (1) we have  a=2u^2 +2±4u.We have 2u^2 +4u+2>0   and 2u^2 −4u+2=2(u−1)^2 ≥0 ∀u∈N  Thus,the solutions of our problem are:  (a,b)={(2u^2 ±4u+2,2u^2 ),(2v^2 ,2v^2 ±4v+2)}  where u,v∈N

$$\frac{\mathrm{a}+\mathrm{b}}{\mathrm{2}}−\sqrt{\mathrm{ab}}\:=\mathrm{1}\Leftrightarrow\mathrm{a}+\mathrm{b}−\mathrm{2}=\mathrm{2}\sqrt{\mathrm{ab}} \\ $$$$\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{4}+\mathrm{2ab}−\mathrm{4a}−\mathrm{4b}=\mathrm{4ab} \\ $$$$\mathrm{a}^{\mathrm{2}} −\mathrm{2}\left(\mathrm{b}+\mathrm{2}\right)\mathrm{a}+\mathrm{b}^{\mathrm{2}} −\mathrm{4b}+\mathrm{4}=\mathrm{0}\:\:\:\left(\mathrm{1}\right) \\ $$$$\mathrm{We}\:\mathrm{look}\:\mathrm{at}\:\mathrm{this}\:\mathrm{is}\:\mathrm{a}\:\mathrm{quadratic}\:\mathrm{equation} \\ $$$$\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{unknown}\:\mathrm{a}.\mathrm{Then} \\ $$$$\Delta'=\left(\mathrm{b}+\mathrm{2}\right)^{\mathrm{2}} −\left(\mathrm{b}−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{8b}. \\ $$$$\mathrm{The}\:\mathrm{equation}\:\left(\mathrm{1}\right)\:\mathrm{has}\:\mathrm{integer}\:\mathrm{roots}\:,\mathrm{so} \\ $$$$\sqrt{\Delta'}=\mathrm{m}^{\mathrm{2}} \Rightarrow\mathrm{8b}=\mathrm{m}^{\mathrm{2}} \Rightarrow\mathrm{b}=\mathrm{2u}^{\mathrm{2}} .\mathrm{Replace} \\ $$$$\mathrm{into}\:\left(\mathrm{1}\right)\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{a}=\mathrm{2u}^{\mathrm{2}} +\mathrm{2}\pm\mathrm{4u}.\mathrm{We}\:\mathrm{have}\:\mathrm{2u}^{\mathrm{2}} +\mathrm{4u}+\mathrm{2}>\mathrm{0} \\ $$$$\:\mathrm{and}\:\mathrm{2u}^{\mathrm{2}} −\mathrm{4u}+\mathrm{2}=\mathrm{2}\left(\mathrm{u}−\mathrm{1}\right)^{\mathrm{2}} \geqslant\mathrm{0}\:\forall\mathrm{u}\in\mathbb{N} \\ $$$$\mathrm{Thus},\mathrm{the}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{our}\:\mathrm{problem}\:\mathrm{are}: \\ $$$$\left(\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}}\right)=\left\{\left(\mathrm{2}\boldsymbol{\mathrm{u}}^{\mathrm{2}} \pm\mathrm{4}\boldsymbol{\mathrm{u}}+\mathrm{2},\mathrm{2}\boldsymbol{\mathrm{u}}^{\mathrm{2}} \right),\left(\mathrm{2}\boldsymbol{\mathrm{v}}^{\mathrm{2}} ,\mathrm{2}\boldsymbol{\mathrm{v}}^{\mathrm{2}} \pm\mathrm{4}\boldsymbol{\mathrm{v}}+\mathrm{2}\right)\right\} \\ $$$$\boldsymbol{\mathrm{where}}\:\boldsymbol{\mathrm{u}},\boldsymbol{\mathrm{v}}\in\mathbb{N} \\ $$

Commented by mathdave last updated on 06/Sep/20

good solution

$${good}\:{solution} \\ $$

Commented by 1549442205PVT last updated on 06/Sep/20

Thank Sir.You are welcome.

$$\mathrm{Thank}\:\mathrm{Sir}.\mathrm{You}\:\mathrm{are}\:\mathrm{welcome}. \\ $$

Answered by MJS_new last updated on 06/Sep/20

same solution but different path  ((a+b)/2)−(√(ab))=1  a=u−v∧b=u+v with u, v ∈N ∧ u>v  u−(√(u^2 −v^2 ))=1  u=((v^2 +1)/2)  a=(((v−1)^2 )/2)∧b=(((v+1)^2 )/2)  a, b ∈N ⇒ v=2n+1  a=2n^2 ∧b=2(n+1)^2   solution is { (((2n^2 )),((2(n+1)^2 )) ) ∣ n∈N}

$$\mathrm{same}\:\mathrm{solution}\:\mathrm{but}\:\mathrm{different}\:\mathrm{path} \\ $$$$\frac{{a}+{b}}{\mathrm{2}}−\sqrt{{ab}}=\mathrm{1} \\ $$$${a}={u}−{v}\wedge{b}={u}+{v}\:{with}\:{u},\:{v}\:\in\mathbb{N}\:\wedge\:{u}>{v} \\ $$$${u}−\sqrt{{u}^{\mathrm{2}} −{v}^{\mathrm{2}} }=\mathrm{1} \\ $$$${u}=\frac{{v}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}} \\ $$$${a}=\frac{\left({v}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}}\wedge{b}=\frac{\left({v}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}} \\ $$$${a},\:{b}\:\in\mathbb{N}\:\Rightarrow\:{v}=\mathrm{2}{n}+\mathrm{1} \\ $$$${a}=\mathrm{2}{n}^{\mathrm{2}} \wedge{b}=\mathrm{2}\left({n}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{solution}\:\mathrm{is}\:\left\{\begin{pmatrix}{\mathrm{2}{n}^{\mathrm{2}} }\\{\mathrm{2}\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\end{pmatrix}\:\mid\:{n}\in\mathbb{N}\right\} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com