Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 112119 by mnjuly1970 last updated on 06/Sep/20

             ....calculus....  prove that:::  if   Ω =∫_(0  ) ^( 1) ln(ln(1−(√x) ))dx  then  Re(Ω) := −γ + ln(2)....    m.n. july 1970#

$$\:\:\:\:\:\:\:\:\:\:\:\:\:....{calculus}.... \\ $$$${prove}\:{that}::: \\ $$$${if}\:\:\:\Omega\:=\int_{\mathrm{0}\:\:} ^{\:\mathrm{1}} {ln}\left({ln}\left(\mathrm{1}−\sqrt{{x}}\:\right)\right){dx} \\ $$$${then} \\ $$$$\mathscr{R}{e}\left(\Omega\right)\::=\:−\gamma\:+\:{ln}\left(\mathrm{2}\right).... \\ $$$$ \\ $$$${m}.{n}.\:{july}\:\mathrm{1970}# \\ $$

Answered by maths mind last updated on 06/Sep/20

u=ln(1−(√x))⇒x=(1−e^u )^2 ⇒dx=−2e^u (1−e^u )du  Ω=∫_0 ^(−∞) ln(u).−2e^u (1−e^u )du  we use ln(z)=ln∣z∣+iarg(z) z∉IR_− ^∗   put u=−t⇒=∫_0 ^∞ ln(−t).2e^(−t) (1−e^(−t) )dt  =∫_0 ^∞ (ln(t)+iπ)2e^t (1−e^t )dt  Re(Ω)=∫_0 ^∞ 2ln(t)e^(−t) dt−2∫_0 ^∞ ln(t)e^(−2t) dt  Γ(z)=∫_0 ^∞ t^(z−1) e^(−t) dt⇒Γ′(1)=∫_0 ^(+∞) ln(t)e^(−t) dt=γ  Re(Ω)=−2γ−2∫_0 ^(+∞) ln((s/2))e^(−s) .(ds/2)  =−2γ−∫_0 ^(+∞) ln(s)e^(−s) ds+ln(2)∫_0 ^(+∞) e^(−s) ds  =−2γ+γ+ln(2)[−e^(−s) ]_0 ^(+∞)   =−γ+ln(2)

$${u}={ln}\left(\mathrm{1}−\sqrt{{x}}\right)\Rightarrow{x}=\left(\mathrm{1}−{e}^{{u}} \right)^{\mathrm{2}} \Rightarrow{dx}=−\mathrm{2}{e}^{{u}} \left(\mathrm{1}−{e}^{{u}} \right){du} \\ $$$$\Omega=\int_{\mathrm{0}} ^{−\infty} {ln}\left({u}\right).−\mathrm{2}{e}^{{u}} \left(\mathrm{1}−{e}^{{u}} \right){du} \\ $$$${we}\:{use}\:{ln}\left({z}\right)={ln}\mid{z}\mid+{iarg}\left({z}\right)\:{z}\notin{IR}_{−} ^{\ast} \\ $$$${put}\:{u}=−{t}\Rightarrow=\int_{\mathrm{0}} ^{\infty} {ln}\left(−{t}\right).\mathrm{2}{e}^{−{t}} \left(\mathrm{1}−{e}^{−{t}} \right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \left({ln}\left({t}\right)+{i}\pi\right)\mathrm{2}{e}^{{t}} \left(\mathrm{1}−{e}^{{t}} \right){dt} \\ $$$${Re}\left(\Omega\right)=\int_{\mathrm{0}} ^{\infty} \mathrm{2}{ln}\left({t}\right){e}^{−{t}} {dt}−\mathrm{2}\int_{\mathrm{0}} ^{\infty} {ln}\left({t}\right){e}^{−\mathrm{2}{t}} {dt} \\ $$$$\Gamma\left({z}\right)=\int_{\mathrm{0}} ^{\infty} {t}^{{z}−\mathrm{1}} {e}^{−{t}} {dt}\Rightarrow\Gamma'\left(\mathrm{1}\right)=\int_{\mathrm{0}} ^{+\infty} {ln}\left({t}\right){e}^{−{t}} {dt}=\gamma \\ $$$${Re}\left(\Omega\right)=−\mathrm{2}\gamma−\mathrm{2}\int_{\mathrm{0}} ^{+\infty} {ln}\left(\frac{{s}}{\mathrm{2}}\right){e}^{−{s}} .\frac{{ds}}{\mathrm{2}} \\ $$$$=−\mathrm{2}\gamma−\int_{\mathrm{0}} ^{+\infty} {ln}\left({s}\right){e}^{−{s}} {ds}+{ln}\left(\mathrm{2}\right)\int_{\mathrm{0}} ^{+\infty} {e}^{−{s}} {ds} \\ $$$$=−\mathrm{2}\gamma+\gamma+{ln}\left(\mathrm{2}\right)\left[−{e}^{−{s}} \right]_{\mathrm{0}} ^{+\infty} \\ $$$$=−\gamma+{ln}\left(\mathrm{2}\right) \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 06/Sep/20

peace be upon you master   ..gratful for your attantion  and favor...

$${peace}\:{be}\:{upon}\:{you}\:{master}\: \\ $$$$..{gratful}\:{for}\:{your}\:{attantion} \\ $$$${and}\:{favor}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com