Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 112128 by mohammad17 last updated on 06/Sep/20

Commented by mohammad17 last updated on 06/Sep/20

please sir help me

$${please}\:{sir}\:{help}\:{me} \\ $$

Commented by bobhans last updated on 06/Sep/20

(Q4B) y^3  = 16−x^3 ; y = (16−x^3 )^(1/3)     (dy/dx) = −x^2 (16−x^3 )^(−(2/3))    (d^2 y/dx^2 ) = −(2x(16−x^3 )^(−(2/3)) +x^2 (2x^2 (16−x^3 )^(−(5/3)) )   (d^2 y/dx^2 ) = −2x(16−x^3 )^(−(2/3)) −2x^4 (16−x^3 )^(−(5/3))   (d^2 y/dx^2 )∣_(x=2)  = −4(8)^(−(2/3)) −32(8)^(−(5/3))                    = ((−4)/4)−((32)/(32)) = −2

$$\left(\mathrm{Q4B}\right)\:\mathrm{y}^{\mathrm{3}} \:=\:\mathrm{16}−\mathrm{x}^{\mathrm{3}} ;\:\mathrm{y}\:=\:\left(\mathrm{16}−\mathrm{x}^{\mathrm{3}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:−\mathrm{x}^{\mathrm{2}} \left(\mathrm{16}−\mathrm{x}^{\mathrm{3}} \right)^{−\frac{\mathrm{2}}{\mathrm{3}}} \\ $$$$\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:=\:−\left(\mathrm{2x}\left(\mathrm{16}−\mathrm{x}^{\mathrm{3}} \right)^{−\frac{\mathrm{2}}{\mathrm{3}}} +\mathrm{x}^{\mathrm{2}} \left(\mathrm{2x}^{\mathrm{2}} \left(\mathrm{16}−\mathrm{x}^{\mathrm{3}} \right)^{−\frac{\mathrm{5}}{\mathrm{3}}} \right)\right. \\ $$$$\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:=\:−\mathrm{2x}\left(\mathrm{16}−\mathrm{x}^{\mathrm{3}} \right)^{−\frac{\mathrm{2}}{\mathrm{3}}} −\mathrm{2x}^{\mathrm{4}} \left(\mathrm{16}−\mathrm{x}^{\mathrm{3}} \right)^{−\frac{\mathrm{5}}{\mathrm{3}}} \\ $$$$\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\mid_{\mathrm{x}=\mathrm{2}} \:=\:−\mathrm{4}\left(\mathrm{8}\right)^{−\frac{\mathrm{2}}{\mathrm{3}}} −\mathrm{32}\left(\mathrm{8}\right)^{−\frac{\mathrm{5}}{\mathrm{3}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{−\mathrm{4}}{\mathrm{4}}−\frac{\mathrm{32}}{\mathrm{32}}\:=\:−\mathrm{2}\: \\ $$

Answered by bemath last updated on 06/Sep/20

(Q1) y−xy = 2x, y = ((2x)/(−x+1))  ⇒ y′=(2/((1−x)^2 )) , m_(normal ) =−(1/(y′))  m_(normal) =−(((1−x)^2 )/2) parallel to  line 2x+y=0 ⇒ −(((1−x)^2 )/2) = −2  ⇒(1−x)^2 = 4 → { ((1−x=2, x=−1)),((1−x=−2,x=3)) :}  for  { ((x=−1, y=((−2)/2)=−1)),((x=3,y=(6/(−2))=−3)) :}  → { ((normal at point(−1,−1) is 2x+y=−3)),((normal at point(3,−3) is 2x+y=3)) :}

$$\left({Q}\mathrm{1}\right)\:{y}−{xy}\:=\:\mathrm{2}{x},\:{y}\:=\:\frac{\mathrm{2}{x}}{−{x}+\mathrm{1}} \\ $$$$\Rightarrow\:{y}'=\frac{\mathrm{2}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }\:,\:{m}_{{normal}\:} =−\frac{\mathrm{1}}{{y}'} \\ $$$${m}_{{normal}} =−\frac{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }{\mathrm{2}}\:{parallel}\:{to} \\ $$$${line}\:\mathrm{2}{x}+{y}=\mathrm{0}\:\Rightarrow\:−\frac{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }{\mathrm{2}}\:=\:−\mathrm{2} \\ $$$$\Rightarrow\left(\mathrm{1}−{x}\right)^{\mathrm{2}} =\:\mathrm{4}\:\rightarrow\begin{cases}{\mathrm{1}−{x}=\mathrm{2},\:{x}=−\mathrm{1}}\\{\mathrm{1}−{x}=−\mathrm{2},{x}=\mathrm{3}}\end{cases} \\ $$$${for}\:\begin{cases}{{x}=−\mathrm{1},\:{y}=\frac{−\mathrm{2}}{\mathrm{2}}=−\mathrm{1}}\\{{x}=\mathrm{3},{y}=\frac{\mathrm{6}}{−\mathrm{2}}=−\mathrm{3}}\end{cases} \\ $$$$\rightarrow\begin{cases}{{normal}\:{at}\:{point}\left(−\mathrm{1},−\mathrm{1}\right)\:{is}\:\mathrm{2}{x}+{y}=−\mathrm{3}}\\{{normal}\:{at}\:{point}\left(\mathrm{3},−\mathrm{3}\right)\:{is}\:\mathrm{2}{x}+{y}=\mathrm{3}}\end{cases} \\ $$

Commented by mohammad17 last updated on 06/Sep/20

thank you sir can you help me?

$${thank}\:{you}\:{sir}\:{can}\:{you}\:{help}\:{me}? \\ $$

Commented by bemath last updated on 06/Sep/20

ok

$${ok} \\ $$

Answered by bemath last updated on 06/Sep/20

(Q5B) lim_(x→0)  ((xsin x)/(1−cos x))=lim_(x→0)  ((sin x+xcos x)/(sin x)) = lim_(x→0) (1+((xcos x)/(sin x)))   1+lim_(x→0)  ((cos x−xsin x)/(cos x)) = 2

$$\left({Q}\mathrm{5}{B}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}\mathrm{sin}\:{x}}{\mathrm{1}−\mathrm{cos}\:{x}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}+{x}\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+\frac{{x}\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}}\right) \\ $$$$\:\mathrm{1}+\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:{x}−{x}\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}\:=\:\mathrm{2} \\ $$

Answered by bemath last updated on 06/Sep/20

(Q2B)lim_(x→∞)  ((3x^2 −6x)/(4x−8)) = lim_(x→0)  ((x^2 (3−(6/x)))/(x^2 ((4/x)−(8/x^2 )))) = ∞

$$\left({Q}\mathrm{2}{B}\right)\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{6}{x}}{\mathrm{4}{x}−\mathrm{8}}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{2}} \left(\mathrm{3}−\frac{\mathrm{6}}{{x}}\right)}{{x}^{\mathrm{2}} \left(\frac{\mathrm{4}}{{x}}−\frac{\mathrm{8}}{{x}^{\mathrm{2}} }\right)}\:=\:\infty \\ $$

Answered by mathmax by abdo last updated on 06/Sep/20

Q_3 )   y(x)=((x^3 −1)/(x^2 −1))   y is not conutinue at x_0 =1 but   lim_(x→1)  y(x) =lim_(x→1)   (((x−1)(x^2 +x+1))/((x−1)(x+1))) =lim_(x→1)    ((x^2  +x+1)/(x+1))=(3/2)  but if we put  { ((y(x)=((x^3 −1)/(x^2 −1)) if x≠1)),((y(1)=(3/2))) :}  this function become continue on R  2) y(x)=((∣x∣)/x)      lim_(x→0^+ )   y(x) =lim_(x→0^+ )   (x/x) =1  (continue at right)  lim_(x→0^− )    y(x)=lim_(x→0^− )   ((−x)/x) =−1   (continue at left)  but y is not continue at

$$\left.\mathrm{Q}_{\mathrm{3}} \right)\:\:\:\mathrm{y}\left(\mathrm{x}\right)=\frac{\mathrm{x}^{\mathrm{3}} −\mathrm{1}}{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}\:\:\:\mathrm{y}\:\mathrm{is}\:\mathrm{not}\:\mathrm{conutinue}\:\mathrm{at}\:\mathrm{x}_{\mathrm{0}} =\mathrm{1}\:\mathrm{but}\: \\ $$$$\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{1}} \:\mathrm{y}\left(\mathrm{x}\right)\:=\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{1}} \:\:\frac{\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)}{\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}+\mathrm{1}\right)}\:=\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{1}} \:\:\:\frac{\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}+\mathrm{1}}{\mathrm{x}+\mathrm{1}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\mathrm{but}\:\mathrm{if}\:\mathrm{we}\:\mathrm{put}\:\begin{cases}{\mathrm{y}\left(\mathrm{x}\right)=\frac{\mathrm{x}^{\mathrm{3}} −\mathrm{1}}{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}\:\mathrm{if}\:\mathrm{x}\neq\mathrm{1}}\\{\mathrm{y}\left(\mathrm{1}\right)=\frac{\mathrm{3}}{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{this}\:\mathrm{function}\:\mathrm{become}\:\mathrm{continue}\:\mathrm{on}\:\mathrm{R} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{y}\left(\mathrm{x}\right)=\frac{\mid\mathrm{x}\mid}{\mathrm{x}}\:\:\:\:\:\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}^{+} } \:\:\mathrm{y}\left(\mathrm{x}\right)\:=\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}^{+} } \:\:\frac{\mathrm{x}}{\mathrm{x}}\:=\mathrm{1}\:\:\left(\mathrm{continue}\:\mathrm{at}\:\mathrm{right}\right) \\ $$$$\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}^{−} } \:\:\:\mathrm{y}\left(\mathrm{x}\right)=\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}^{−} } \:\:\frac{−\mathrm{x}}{\mathrm{x}}\:=−\mathrm{1}\:\:\:\left(\mathrm{continue}\:\mathrm{at}\:\mathrm{left}\right) \\ $$$$\mathrm{but}\:\mathrm{y}\:\mathrm{is}\:\mathrm{not}\:\mathrm{continue}\:\mathrm{at} \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 06/Sep/20

at 0

$$\mathrm{at}\:\mathrm{0} \\ $$

Answered by mathmax by abdo last updated on 06/Sep/20

q_4 )_b          y^2 =7−x^2 −xy  so x=0 ⇒y =+^− (√7)  the curve crosses the x axis at  x_1 ((√7),0) and x_2 =(−(√7),o)  we have by derivation  2x +y +xy^′  +2yy^′  =0 ⇒  (x+2y)y^′  =−(2x+y) ⇒y^′  =−((2x+y)/(x+2y))  the dirctor coefficient  of tanvent at x_1  is y^′ ((√7))  =−((2(√7)+y((√7)))/((√7)+2y((√7)))) =−((2(√7)+0)/(√7)) =−2  the director coefficient of tangent at x_2 is y^′ (−(√7))  =−((2(−(√7))+y(−(√7)))/(−(√7)+2y(−(√7)))) =−2  ⇒ the tangentes are paralleles

$$\left.\mathrm{q}_{\mathrm{4}} \right)_{\mathrm{b}} \:\:\:\:\:\:\:\:\:\mathrm{y}^{\mathrm{2}} =\mathrm{7}−\mathrm{x}^{\mathrm{2}} −\mathrm{xy}\:\:\mathrm{so}\:\mathrm{x}=\mathrm{0}\:\Rightarrow\mathrm{y}\:=\overset{−} {+}\sqrt{\mathrm{7}} \\ $$$$\mathrm{the}\:\mathrm{curve}\:\mathrm{crosses}\:\mathrm{the}\:\mathrm{x}\:\mathrm{axis}\:\mathrm{at}\:\:\mathrm{x}_{\mathrm{1}} \left(\sqrt{\mathrm{7}},\mathrm{0}\right)\:\mathrm{and}\:\mathrm{x}_{\mathrm{2}} =\left(−\sqrt{\mathrm{7}},\mathrm{o}\right) \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{by}\:\mathrm{derivation}\:\:\mathrm{2x}\:+\mathrm{y}\:+\mathrm{xy}^{'} \:+\mathrm{2yy}^{'} \:=\mathrm{0}\:\Rightarrow \\ $$$$\left(\mathrm{x}+\mathrm{2y}\right)\mathrm{y}^{'} \:=−\left(\mathrm{2x}+\mathrm{y}\right)\:\Rightarrow\mathrm{y}^{'} \:=−\frac{\mathrm{2x}+\mathrm{y}}{\mathrm{x}+\mathrm{2y}} \\ $$$$\mathrm{the}\:\mathrm{dirctor}\:\mathrm{coefficient}\:\:\mathrm{of}\:\mathrm{tanvent}\:\mathrm{at}\:\mathrm{x}_{\mathrm{1}} \:\mathrm{is}\:\mathrm{y}^{'} \left(\sqrt{\mathrm{7}}\right) \\ $$$$=−\frac{\mathrm{2}\sqrt{\mathrm{7}}+\mathrm{y}\left(\sqrt{\mathrm{7}}\right)}{\sqrt{\mathrm{7}}+\mathrm{2y}\left(\sqrt{\mathrm{7}}\right)}\:=−\frac{\mathrm{2}\sqrt{\mathrm{7}}+\mathrm{0}}{\sqrt{\mathrm{7}}}\:=−\mathrm{2} \\ $$$$\mathrm{the}\:\mathrm{director}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{tangent}\:\mathrm{at}\:\mathrm{x}_{\mathrm{2}} \mathrm{is}\:\mathrm{y}^{'} \left(−\sqrt{\mathrm{7}}\right) \\ $$$$=−\frac{\mathrm{2}\left(−\sqrt{\mathrm{7}}\right)+\mathrm{y}\left(−\sqrt{\mathrm{7}}\right)}{−\sqrt{\mathrm{7}}+\mathrm{2y}\left(−\sqrt{\mathrm{7}}\right)}\:=−\mathrm{2}\:\:\Rightarrow\:\mathrm{the}\:\mathrm{tangentes}\:\mathrm{are}\:\mathrm{paralleles} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com