Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 112179 by ajfour last updated on 06/Sep/20

Commented by ajfour last updated on 06/Sep/20

If AC=BC= a=5  &   AD=BE=b=6  find equation of lines AC and BC.

$${If}\:{AC}={BC}=\:{a}=\mathrm{5} \\ $$$$\&\:\:\:{AD}={BE}={b}=\mathrm{6} \\ $$$${find}\:{equation}\:{of}\:{lines}\:{AC}\:{and}\:{BC}. \\ $$

Answered by mr W last updated on 06/Sep/20

Commented by mr W last updated on 06/Sep/20

OD=b−p  CE=a−(√(p^2 +q^2 ))  a^2 =(a−(√(p^2 +q^2 )))^2 +b^2 −2b(a−(√(p^2 +q^2 )))(q/( (√(p^2 +q^2 ))))  ⇒(a−(√(p^2 +q^2 )))(a−(√(p^2 +q^2 ))−((2bq)/( (√(p^2 +q^2 )))))=a^2 −b^2  ..(i)  tan ∠B=((b−p)/(b+q))  cos ∠B=((a^2 +b^2 −(a−(√(p^2 +q^2 )))^2 )/(2ab))  1+(((b−p)/(b+q)))^2 =((4a^2 b^2 )/([a^2 +b^2 −(a−(√(p^2 +q^2 )))^2 ]^2 ))  (√(1+(((b−p)/(b+q)))^2 ))[a^2 +b^2 −(a−(√(p^2 +q^2 )))^2 ]=2ab   ..(ii)    p≈1.40282  q≈0.93054

$${OD}={b}−{p} \\ $$$${CE}={a}−\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} } \\ $$$${a}^{\mathrm{2}} =\left({a}−\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }\right)^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{b}\left({a}−\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }\right)\frac{{q}}{\:\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }} \\ $$$$\Rightarrow\left({a}−\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }\right)\left({a}−\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }−\frac{\mathrm{2}{bq}}{\:\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }}\right)={a}^{\mathrm{2}} −{b}^{\mathrm{2}} \:..\left({i}\right) \\ $$$$\mathrm{tan}\:\angle{B}=\frac{{b}−{p}}{{b}+{q}} \\ $$$$\mathrm{cos}\:\angle{B}=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\left({a}−\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }\right)^{\mathrm{2}} }{\mathrm{2}{ab}} \\ $$$$\mathrm{1}+\left(\frac{{b}−{p}}{{b}+{q}}\right)^{\mathrm{2}} =\frac{\mathrm{4}{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{\left[{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\left({a}−\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }\right)^{\mathrm{2}} \right]^{\mathrm{2}} } \\ $$$$\sqrt{\mathrm{1}+\left(\frac{{b}−{p}}{{b}+{q}}\right)^{\mathrm{2}} }\left[{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\left({a}−\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }\right)^{\mathrm{2}} \right]=\mathrm{2}{ab}\:\:\:..\left({ii}\right) \\ $$$$ \\ $$$${p}\approx\mathrm{1}.\mathrm{40282} \\ $$$${q}\approx\mathrm{0}.\mathrm{93054} \\ $$

Commented by ajfour last updated on 08/Sep/20

thanks for solving, sir; but i believe  exact answer might be possible  someway..  Just now, i could prove that  either ∠A=∠B  or  ∠A=(π/2)+∠B  we take the first case here:  ⇒ lines are perpendicular  Then   p=(a/b)(a−(√(b^2 −a^2 )))  and      q=((√(b^2 −a^2 ))/b)(a−(√(b^2 −a^2 )))  and for  a=5, b=6       p=(5/6)(5−(√(11)))≈ 1.4028       q=((√(11))/6)(5−(√(11)))≈ 0.9305  (same as your answer Sir)  ..........................................

$${thanks}\:{for}\:{solving},\:{sir};\:{but}\:{i}\:{believe} \\ $$$${exact}\:{answer}\:{might}\:{be}\:{possible} \\ $$$${someway}.. \\ $$$${Just}\:{now},\:{i}\:{could}\:{prove}\:{that} \\ $$$${either}\:\angle{A}=\angle{B}\:\:{or}\:\:\angle{A}=\frac{\pi}{\mathrm{2}}+\angle{B} \\ $$$${we}\:{take}\:{the}\:{first}\:{case}\:{here}: \\ $$$$\Rightarrow\:{lines}\:{are}\:{perpendicular} \\ $$$${Then}\:\:\:{p}=\frac{{a}}{{b}}\left({a}−\sqrt{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }\right) \\ $$$${and}\:\:\:\:\:\:{q}=\frac{\sqrt{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }}{{b}}\left({a}−\sqrt{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }\right) \\ $$$${and}\:{for}\:\:{a}=\mathrm{5},\:{b}=\mathrm{6} \\ $$$$\:\:\:\:\:{p}=\frac{\mathrm{5}}{\mathrm{6}}\left(\mathrm{5}−\sqrt{\mathrm{11}}\right)\approx\:\mathrm{1}.\mathrm{4028} \\ $$$$\:\:\:\:\:{q}=\frac{\sqrt{\mathrm{11}}}{\mathrm{6}}\left(\mathrm{5}−\sqrt{\mathrm{11}}\right)\approx\:\mathrm{0}.\mathrm{9305} \\ $$$$\left({same}\:{as}\:{your}\:{answer}\:{Sir}\right) \\ $$$$.......................................... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com