Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 112203 by mathdave last updated on 06/Sep/20

proporsed by m.njuly 1970  ∫_0 ^1 ((ln(((x+1))^(1/3) ))/((x+1)(x+2)))dx  solution  let I=(1/3)∫_0 ^1 ((ln(x+1))/((x+1)(x+2)))dx  I=(1/3)∫_0 ^1 ((ln(1+x))/(x+1))dx−∫_0 ^1 ((ln(x+1))/(x+2))dx=A−B  let A=(1/3)∫_0 ^1 ((ln(x+1))/(x+1))dx ( using IBP)  A=(1/3)[ln^2 (x+1)]_0 ^1 −(1/3)∫_0 ^1 ((ln(x+1))/(x+1))dx  A(1+(1/3))=(1/3)ln^2 (2)  A=∫_0 ^1 ((ln(x+1))/(x+1))dx=(1/3)ln^2 (2)......(1)  then B=(1/3)∫_0 ^1 ((ln(x+1))/(x+2))dx  B=(1/3)[ln(x+2)ln(x+1)]_0 ^1 −(1/3)∫_0 ^1 ((ln(x+2))/(x+1))dx  let x+1=t  B=(1/3)ln3ln 2−(1/3)∫_1 ^2 ((ln(1+t))/t)dt  let t=−x  B=(1/3)ln3ln2−(1/3)∫_(−1) ^(−2) ((ln(1−x))/x)dx  but ∫((ln(1−x))/x)dx=−Li_2 (x)  B=(1/3)ln3ln2+(1/3)[Li_2 (x)]_(−1) ^(−2)   B=(1/3)ln3ln2+(1/3)Li_2 (−2)−(1/3)Li_2 (−1)  B=(1/3)ln3ln2+(1/3)Li_2 (−2)+(π^2 /(36))  but I=A−B  ∫_0 ^1 ((ln(((1+x))^(1/3) ))/((x+1)(x+2)))dx=(1/4)ln^2 (2)−(1/3)ln3ln2−(1/3)Li_2 (−2)−(π^2 /(36))  mathdave(06/09/2020)

proporsedbym.njuly197001ln(x+13)(x+1)(x+2)dxsolutionletI=1301ln(x+1)(x+1)(x+2)dxI=1301ln(1+x)x+1dx01ln(x+1)x+2dx=ABletA=1301ln(x+1)x+1dx(usingIBP)A=13[ln2(x+1)]011301ln(x+1)x+1dxA(1+13)=13ln2(2)A=01ln(x+1)x+1dx=13ln2(2)......(1)thenB=1301ln(x+1)x+2dxB=13[ln(x+2)ln(x+1)]011301ln(x+2)x+1dxletx+1=tB=13ln3ln21312ln(1+t)tdtlett=xB=13ln3ln21312ln(1x)xdxbutln(1x)xdx=Li2(x)B=13ln3ln2+13[Li2(x)]12B=13ln3ln2+13Li2(2)13Li2(1)B=13ln3ln2+13Li2(2)+π236butI=AB01ln(1+x3)(x+1)(x+2)dx=14ln2(2)13ln3ln213Li2(2)π236mathdave(06/09/2020)

Commented by mnjuly1970 last updated on 06/Sep/20

very nice, thank you sir    mathdave .grateful for your  effort  and favor....

verynice,thankyousirmathdave.gratefulforyoureffortandfavor....

Commented by Tawa11 last updated on 06/Sep/21

great sir

greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com