Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 114880 by manuel2456 last updated on 21/Sep/20

∫ln (sin (x))dx=?

$$\int\mathrm{ln}\:\left(\mathrm{sin}\:\left({x}\right)\right){dx}=? \\ $$

Commented by MJS_new last updated on 21/Sep/20

similar to question 113634

$$\mathrm{similar}\:\mathrm{to}\:\mathrm{question}\:\mathrm{113634} \\ $$

Answered by mathdave last updated on 23/Sep/20

solution   from binomial theorem  let   (1/(1−y))=Σ_(n=1) ^∞ y^(n−1)  or ln(1−y)=−Σ_(n=1) ^∞ (y^n /n)  put y=e^(i2x)   ln(1−e^(i2x) )=−Σ_(n=1) ^∞ (e^(i2nx) /n)  ln(1−(cos2x+isin2x))=−Σ_(n=1) ^∞ (1/n)(cos(2nx)+isin(2nx))  but 2sin^2 x=1−cos2x  and sin2x=2sinxcosx  ln(2sin^2 x−i2sinxcosx)=−Σ_(n=1) ^∞ ((cos(2nx))/n)−iΣ_(n=1) ^∞ ((sin(2nx))/n)  ln(2sinx(sinx−icosx))=−Σ_(n=1) ^∞ ((cos(2nx))/n)−iΣ_(n=1) ^∞ ((sin(2nx))/n)  ln(2sinx)+ln(sinx−icosx)=−Σ_(n=1) ^∞ ((cos(2nx))/n)−iΣ_(n=1) ^∞ ((sin(2nx))/n)  let  ln(−i(−(1/i)sinx+cosx))=ln(−i(cosx−(1/i)sinx))=ln(−i(cosx+isinx))=ln(−i.e^(ix) )  but  ln(−i.e^(ix) )=ln(−1)+ln(e^(ix) )=ix+ln(−i)=ix−i(π/2)=−i((π/2)−x)  ∴ln(2sinx)−i((π/2)−x)=−Σ_(n=1) ^∞ ((cos(2nx))/n)−iΣ_(n=1) ^∞ ((sin(2nx))/n)  by equating real and imaginary part  ln(2sinx)=−Σ_(n=1) ^∞ ((cos(2nx))/n)  ln2+ln(sinx)=−Σ_(n=1) ^∞ ((cos(2nx))/n)  ln(sinx)=−ln2−Σ_(n=1) ^∞ ((cos(2nx))/n) ......(1)    ∵∫ln(sinx)dx=−ln2∫dx−Σ_(n=1) ^∞ (1/n)∫cos(2nx)dx  ∵∫ln(sinx)dx=−xln2−Σ_(n=1) ^∞ (1/(2n^2 ))sin(2nx)  by mathdave(23/09/2020)

$${solution}\: \\ $$$${from}\:{binomial}\:{theorem} \\ $$$${let}\:\:\:\frac{\mathrm{1}}{\mathrm{1}−{y}}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{y}^{{n}−\mathrm{1}} \:{or}\:\mathrm{ln}\left(\mathrm{1}−{y}\right)=−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{y}^{{n}} }{{n}} \\ $$$${put}\:{y}={e}^{{i}\mathrm{2}{x}} \\ $$$$\mathrm{ln}\left(\mathrm{1}−{e}^{{i}\mathrm{2}{x}} \right)=−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{e}^{{i}\mathrm{2}{nx}} }{{n}} \\ $$$$\mathrm{ln}\left(\mathrm{1}−\left(\mathrm{cos2}{x}+{i}\mathrm{sin2}{x}\right)\right)=−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}}\left(\mathrm{cos}\left(\mathrm{2}{nx}\right)+{i}\mathrm{sin}\left(\mathrm{2}{nx}\right)\right) \\ $$$${but}\:\mathrm{2sin}^{\mathrm{2}} {x}=\mathrm{1}−\mathrm{cos2}{x}\:\:{and}\:\mathrm{sin2}{x}=\mathrm{2sin}{x}\mathrm{cos}{x} \\ $$$$\mathrm{ln}\left(\mathrm{2sin}^{\mathrm{2}} {x}−{i}\mathrm{2sin}{x}\mathrm{cos}{x}\right)=−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{cos}\left(\mathrm{2}{nx}\right)}{{n}}−{i}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\left(\mathrm{2}{nx}\right)}{{n}} \\ $$$$\mathrm{ln}\left(\mathrm{2sin}{x}\left(\mathrm{sin}{x}−{i}\mathrm{cos}{x}\right)\right)=−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{cos}\left(\mathrm{2}{nx}\right)}{{n}}−{i}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\left(\mathrm{2}{nx}\right)}{{n}} \\ $$$$\mathrm{ln}\left(\mathrm{2sin}{x}\right)+\mathrm{ln}\left(\mathrm{sin}{x}−{i}\mathrm{cos}{x}\right)=−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{cos}\left(\mathrm{2}{nx}\right)}{{n}}−{i}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\left(\mathrm{2}{nx}\right)}{{n}} \\ $$$${let} \\ $$$$\mathrm{ln}\left(−{i}\left(−\frac{\mathrm{1}}{{i}}\mathrm{sin}{x}+\mathrm{cos}{x}\right)\right)=\mathrm{ln}\left(−{i}\left(\mathrm{cos}{x}−\frac{\mathrm{1}}{{i}}\mathrm{sin}{x}\right)\right)=\mathrm{ln}\left(−{i}\left(\mathrm{cos}{x}+{i}\mathrm{sin}{x}\right)\right)=\mathrm{ln}\left(−{i}.{e}^{{ix}} \right) \\ $$$${but} \\ $$$$\mathrm{ln}\left(−{i}.{e}^{{ix}} \right)=\mathrm{ln}\left(−\mathrm{1}\right)+\mathrm{ln}\left({e}^{{ix}} \right)={ix}+\mathrm{ln}\left(−{i}\right)={ix}−{i}\frac{\pi}{\mathrm{2}}=−{i}\left(\frac{\pi}{\mathrm{2}}−{x}\right) \\ $$$$\therefore\mathrm{ln}\left(\mathrm{2sin}{x}\right)−{i}\left(\frac{\pi}{\mathrm{2}}−{x}\right)=−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{cos}\left(\mathrm{2}{nx}\right)}{{n}}−{i}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\left(\mathrm{2}{nx}\right)}{{n}} \\ $$$${by}\:{equating}\:{real}\:{and}\:{imaginary}\:{part} \\ $$$$\mathrm{ln}\left(\mathrm{2sin}{x}\right)=−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{cos}\left(\mathrm{2}{nx}\right)}{{n}} \\ $$$$\mathrm{ln2}+\mathrm{ln}\left(\mathrm{sin}{x}\right)=−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{cos}\left(\mathrm{2}{nx}\right)}{{n}} \\ $$$$\mathrm{ln}\left(\mathrm{sin}{x}\right)=−\mathrm{ln2}−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{cos}\left(\mathrm{2}{nx}\right)}{{n}}\:......\left(\mathrm{1}\right)\:\: \\ $$$$\because\int\mathrm{ln}\left(\mathrm{sin}{x}\right){dx}=−\mathrm{ln2}\int{dx}−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}}\int\mathrm{cos}\left(\mathrm{2}{nx}\right){dx} \\ $$$$\because\int\mathrm{ln}\left(\mathrm{sin}{x}\right){dx}=−{x}\mathrm{ln2}−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }\mathrm{sin}\left(\mathrm{2}{nx}\right) \\ $$$${by}\:{mathdave}\left(\mathrm{23}/\mathrm{09}/\mathrm{2020}\right) \\ $$$$ \\ $$

Commented by Tawa11 last updated on 06/Sep/21

grest sir

$$\mathrm{grest}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com