Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 112266 by Aina Samuel Temidayo last updated on 07/Sep/20

Let Ω denote the circumcircle of ABC.  The tangent to Ω at A meets BC at X.  Let the angle bisectors of ∠AXB meet  AC and AB at E and F  respectively. D is the foot of the angle  bisector from ∠BAC on BC. Let AD  intersect EF at K and Ω again at  L(other than A). Prove that AEDF is  a rhombus and further prove that the  circle defined by triangle KLX passes  through the midpoint of line segment  BC.

$$\mathrm{Let}\:\Omega\:\mathrm{denote}\:\mathrm{the}\:\mathrm{circumcircle}\:\mathrm{of}\:\mathrm{ABC}. \\ $$$$\mathrm{The}\:\mathrm{tangent}\:\mathrm{to}\:\Omega\:\mathrm{at}\:\mathrm{A}\:\mathrm{meets}\:\mathrm{BC}\:\mathrm{at}\:\mathrm{X}. \\ $$$$\mathrm{Let}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{bisectors}\:\mathrm{of}\:\angle\mathrm{AXB}\:\mathrm{meet} \\ $$$$\mathrm{AC}\:\mathrm{and}\:\mathrm{AB}\:\mathrm{at}\:\mathrm{E}\:\mathrm{and}\:\mathrm{F} \\ $$$$\mathrm{respectively}.\:\mathrm{D}\:\mathrm{is}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of}\:\mathrm{the}\:\mathrm{angle} \\ $$$$\mathrm{bisector}\:\mathrm{from}\:\angle\mathrm{BAC}\:\mathrm{on}\:\mathrm{BC}.\:\mathrm{Let}\:\mathrm{AD} \\ $$$$\mathrm{intersect}\:\mathrm{EF}\:\mathrm{at}\:\mathrm{K}\:\mathrm{and}\:\Omega\:\mathrm{again}\:\mathrm{at} \\ $$$$\mathrm{L}\left(\mathrm{other}\:\mathrm{than}\:\mathrm{A}\right).\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{AEDF}\:\mathrm{is} \\ $$$$\mathrm{a}\:\mathrm{rhombus}\:\mathrm{and}\:\mathrm{further}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{circle}\:\mathrm{defined}\:\mathrm{by}\:\mathrm{triangle}\:\mathrm{KLX}\:\mathrm{passes} \\ $$$$\mathrm{through}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of}\:\mathrm{line}\:\mathrm{segment} \\ $$$$\mathrm{BC}. \\ $$

Answered by 1549442205PVT last updated on 07/Sep/20

Commented by 1549442205PVT last updated on 07/Sep/20

i)Denote by H the midpoint of BC.Since  AL is the bisector ray of the angle A^(�) ,  L is middle point of the smaller arc BC  Hence,three points O,H,L colinear.  and OHX^(�) =90°(property of the diameter)  On the other hands,OAX^(�) =90°(since  XA is the tangent at A of the circle(O))  We infer the quadrilateral AXHO is  inscribed)⇒AXH^(�) +AOH^(�) =180°(1).On the  other hands,the triangle OAL is isosceles  at O,so OAL^(�) =OLA^(�) =α.Moreover,  in the triangle OAL we have   OAL^(�) +OLA^(�) +AOH^(�) =180° infer  2α+AOH^(�) =180° (2).From (1)(2)we get  AXH^(�) =2α.From that since AXE^(�) =  (1/2)AXH^(�)  we infer OAL^(�) =AXE^(�) =α.  This gives us that KAX^(�) +AXE^(�) =  KAX^(�) +OAL^(�) =OAX^(�) =90°  Thus,KD⊥EF.Consider two teiangles  XAC and XBA have the common angle  AXC^(�) ,ACB^(�) =BAX^(�) .It follows that  ΔAXC∽ΔBXA(a.a)⇒((AX)/(BX))=((AC)/(AB))(3)  .On the other hands,since AD is the   bisector of the angle A^(�)  we have  ((BD)/(DC))=((AB)/(AC))(4).Since XF is the bisector  of the AXB^(�) ,((BF)/(FA))=((BX)/(AX)) (5).From (3)(4)  (5)we obtain ((BD)/(DC))=((BF)/(FA))⇒DF//AC.  Similarly,we have DE//AB  ,so  quadrilateral AEDF is a parallelogram  that has two mutual perpendicular   diagonals.That shows AEDF is a rhombus(q.e.d)  ii)By above proof we have O,H,L are  colinear (H−midpoint of BC) and  OLA^(�) =(1/2)AXH^(�) =KXH^(�) =α.Therefore,  quadrilateral HKXL is inscribed which  shows that the circumcircle of triangle  KXL go through the midpoint H of BC  (q.e.d)

$$\left.\mathrm{i}\right)\mathrm{Denote}\:\mathrm{by}\:\mathrm{H}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of}\:\mathrm{BC}.\mathrm{Since} \\ $$$$\mathrm{AL}\:\mathrm{is}\:\mathrm{the}\:\mathrm{bisector}\:\mathrm{ray}\:\mathrm{of}\:\mathrm{the}\:\mathrm{angle}\:\widehat {\mathrm{A}}, \\ $$$$\mathrm{L}\:\mathrm{is}\:\mathrm{middle}\:\mathrm{point}\:\mathrm{of}\:\mathrm{the}\:\mathrm{smaller}\:\mathrm{arc}\:\mathrm{BC} \\ $$$$\mathrm{Hence},\mathrm{three}\:\mathrm{points}\:\mathrm{O},\mathrm{H},\mathrm{L}\:\mathrm{colinear}. \\ $$$$\mathrm{and}\:\widehat {\mathrm{OHX}}=\mathrm{90}°\left(\mathrm{property}\:\mathrm{of}\:\mathrm{the}\:\mathrm{diameter}\right) \\ $$$$\mathrm{On}\:\mathrm{the}\:\mathrm{other}\:\mathrm{hands},\widehat {\mathrm{OAX}}=\mathrm{90}°\left(\mathrm{since}\right. \\ $$$$\left.\mathrm{XA}\:\mathrm{is}\:\mathrm{the}\:\mathrm{tangent}\:\mathrm{at}\:\mathrm{A}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\left(\mathrm{O}\right)\right) \\ $$$$\mathrm{We}\:\mathrm{infer}\:\mathrm{the}\:\mathrm{quadrilateral}\:\mathrm{AXHO}\:\mathrm{is} \\ $$$$\left.\mathrm{inscribed}\right)\Rightarrow\widehat {\mathrm{AXH}}+\widehat {\mathrm{AOH}}=\mathrm{180}°\left(\mathrm{1}\right).\mathrm{On}\:\mathrm{the} \\ $$$$\mathrm{other}\:\mathrm{hands},\mathrm{the}\:\mathrm{triangle}\:\mathrm{OAL}\:\mathrm{is}\:\mathrm{isosceles} \\ $$$$\mathrm{at}\:\mathrm{O},\mathrm{so}\:\widehat {\mathrm{OAL}}=\widehat {\mathrm{OLA}}=\alpha.\mathrm{Moreover}, \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{OAL}\:\mathrm{we}\:\mathrm{have} \\ $$$$\widehat {\:\mathrm{OAL}}+\widehat {\mathrm{OLA}}+\widehat {\mathrm{AOH}}=\mathrm{180}°\:\mathrm{infer} \\ $$$$\mathrm{2}\alpha+\widehat {\mathrm{AOH}}=\mathrm{180}°\:\left(\mathrm{2}\right).\mathrm{From}\:\left(\mathrm{1}\right)\left(\mathrm{2}\right)\mathrm{we}\:\mathrm{get} \\ $$$$\widehat {\mathrm{AXH}}=\mathrm{2}\alpha.\mathrm{From}\:\mathrm{that}\:\mathrm{since}\:\widehat {\mathrm{AXE}}= \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\widehat {\mathrm{AXH}}\:\mathrm{we}\:\mathrm{infer}\:\widehat {\mathrm{OAL}}=\widehat {\mathrm{AXE}}=\alpha. \\ $$$$\mathrm{This}\:\mathrm{gives}\:\mathrm{us}\:\mathrm{that}\:\widehat {\mathrm{KAX}}+\widehat {\mathrm{AXE}}= \\ $$$$\widehat {\mathrm{KAX}}+\widehat {\mathrm{OAL}}=\widehat {\mathrm{OAX}}=\mathrm{90}° \\ $$$$\mathrm{Thus},\mathrm{KD}\bot\mathrm{EF}.\mathrm{Consider}\:\mathrm{two}\:\mathrm{teiangles} \\ $$$$\mathrm{XAC}\:\mathrm{and}\:\mathrm{XBA}\:\mathrm{have}\:\mathrm{the}\:\mathrm{common}\:\mathrm{angle} \\ $$$$\widehat {\mathrm{AXC}},\widehat {\mathrm{ACB}}=\widehat {\mathrm{BAX}}.\mathrm{It}\:\mathrm{follows}\:\mathrm{that} \\ $$$$\Delta\mathrm{AXC}\backsim\Delta\mathrm{BXA}\left(\mathrm{a}.\mathrm{a}\right)\Rightarrow\frac{\mathrm{AX}}{\mathrm{BX}}=\frac{\mathrm{AC}}{\mathrm{AB}}\left(\mathrm{3}\right) \\ $$$$.\mathrm{On}\:\mathrm{the}\:\mathrm{other}\:\mathrm{hands},\mathrm{since}\:\mathrm{AD}\:\mathrm{is}\:\mathrm{the}\: \\ $$$$\mathrm{bisector}\:\mathrm{of}\:\mathrm{the}\:\mathrm{angle}\:\widehat {\mathrm{A}}\:\mathrm{we}\:\mathrm{have} \\ $$$$\frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AC}}\left(\mathrm{4}\right).\mathrm{Since}\:\mathrm{XF}\:\mathrm{is}\:\mathrm{the}\:\mathrm{bisector} \\ $$$$\mathrm{of}\:\mathrm{the}\:\widehat {\mathrm{AXB}},\frac{\mathrm{BF}}{\mathrm{FA}}=\frac{\mathrm{BX}}{\mathrm{AX}}\:\left(\mathrm{5}\right).\mathrm{From}\:\left(\mathrm{3}\right)\left(\mathrm{4}\right) \\ $$$$\left(\mathrm{5}\right)\mathrm{we}\:\mathrm{obtain}\:\frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{BF}}{\mathrm{FA}}\Rightarrow\mathrm{DF}//\mathrm{AC}. \\ $$$$\mathrm{Similarly},\mathrm{we}\:\mathrm{have}\:\mathrm{DE}//\mathrm{AB}\:\:,\mathrm{so} \\ $$$$\mathrm{quadrilateral}\:\mathrm{AEDF}\:\mathrm{is}\:\mathrm{a}\:\mathrm{parallelogram} \\ $$$$\mathrm{that}\:\mathrm{has}\:\mathrm{two}\:\mathrm{mutual}\:\mathrm{perpendicular}\: \\ $$$$\mathrm{diagonals}.\mathrm{That}\:\mathrm{shows}\:\mathrm{AEDF}\:\mathrm{is}\:\mathrm{a}\:\mathrm{rhombus}\left(\mathrm{q}.\mathrm{e}.\mathrm{d}\right) \\ $$$$\left.\mathrm{ii}\right)\mathrm{By}\:\mathrm{above}\:\mathrm{proof}\:\mathrm{we}\:\mathrm{have}\:\mathrm{O},\mathrm{H},\mathrm{L}\:\mathrm{are} \\ $$$$\mathrm{colinear}\:\left(\mathrm{H}−\mathrm{midpoint}\:\mathrm{of}\:\mathrm{BC}\right)\:\mathrm{and} \\ $$$$\widehat {\mathrm{OLA}}=\frac{\mathrm{1}}{\mathrm{2}}\widehat {\mathrm{AXH}}=\widehat {\mathrm{KXH}}=\alpha.\mathrm{Therefore}, \\ $$$$\mathrm{quadrilateral}\:\mathrm{HKXL}\:\mathrm{is}\:\mathrm{inscribed}\:\mathrm{which} \\ $$$$\mathrm{shows}\:\mathrm{that}\:\mathrm{the}\:\mathrm{circumcircle}\:\mathrm{of}\:\mathrm{triangle} \\ $$$$\mathrm{KXL}\:\mathrm{go}\:\mathrm{through}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{H}\:\mathrm{of}\:\mathrm{BC} \\ $$$$\left(\boldsymbol{\mathrm{q}}.\boldsymbol{\mathrm{e}}.\boldsymbol{\mathrm{d}}\right) \\ $$

Commented by Aina Samuel Temidayo last updated on 07/Sep/20

Thanks.

$$\mathrm{Thanks}. \\ $$

Commented by Aina Samuel Temidayo last updated on 07/Sep/20

I really appreciate your efforts.

$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{efforts}. \\ $$

Commented by Aina Samuel Temidayo last updated on 07/Sep/20

Are you there?

$$\mathrm{Are}\:\mathrm{you}\:\mathrm{there}? \\ $$

Commented by Aina Samuel Temidayo last updated on 07/Sep/20

Commented by Aina Samuel Temidayo last updated on 07/Sep/20

I don′t know if you can also help with  this please?

$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{if}\:\mathrm{you}\:\mathrm{can}\:\mathrm{also}\:\mathrm{help}\:\mathrm{with} \\ $$$$\mathrm{this}\:\mathrm{please}? \\ $$

Commented by Aina Samuel Temidayo last updated on 07/Sep/20

Can you please show how DE//AB ?

$$\mathrm{Can}\:\mathrm{you}\:\mathrm{please}\:\mathrm{show}\:\mathrm{how}\:\mathrm{DE}//\mathrm{AB}\:? \\ $$

Commented by 1549442205PVT last updated on 07/Sep/20

because AL is bisector of BAC^(�) .

$$\mathrm{because}\:\mathrm{AL}\:\mathrm{is}\:\mathrm{bisector}\:\mathrm{of}\:\widehat {\mathrm{BAC}}. \\ $$

Commented by 1549442205PVT last updated on 07/Sep/20

Prove ((CE)/(EA))=((CD)/(DB)) base on the hypothesis  XE is bisector ⇒((CE)/(EA))=((XC)/(XA)),ΔXAC∽  ΔXBA⇒((XC)/(XA))=((AC)/(AB)) but ((AC)/(AB))=((CD)/(DB))(as AD is bisector)  ⇒((CE)/(EA))=((CD)/(DB))(q.e(√d))

$$\mathrm{Prove}\:\frac{\mathrm{CE}}{\mathrm{EA}}=\frac{\mathrm{CD}}{\mathrm{DB}}\:\mathrm{base}\:\mathrm{on}\:\mathrm{the}\:\mathrm{hypothesis} \\ $$$$\mathrm{XE}\:\mathrm{is}\:\mathrm{bisector}\:\Rightarrow\frac{\mathrm{CE}}{\mathrm{EA}}=\frac{\mathrm{XC}}{\mathrm{XA}},\Delta\mathrm{XAC}\backsim \\ $$$$\Delta\mathrm{XBA}\Rightarrow\frac{\mathrm{XC}}{\mathrm{XA}}=\frac{\mathrm{AC}}{\mathrm{AB}}\:\mathrm{but}\:\frac{\mathrm{AC}}{\mathrm{AB}}=\frac{\mathrm{CD}}{\mathrm{DB}}\left(\mathrm{as}\:\mathrm{AD}\:\mathrm{is}\:\mathrm{bisector}\right) \\ $$$$\Rightarrow\frac{\mathrm{CE}}{\mathrm{EA}}=\frac{\mathrm{CD}}{\mathrm{DB}}\left(\mathrm{q}.\mathrm{e}\sqrt{\left.\mathrm{d}\right)}\right. \\ $$

Commented by Aina Samuel Temidayo last updated on 07/Sep/20

Thanks.

$$\mathrm{Thanks}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com