Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 112271 by bemath last updated on 07/Sep/20

    (√(bemath))     ∫ sin x (√(1−sin x)) dx ?

$$\:\:\:\:\sqrt{\mathrm{bemath}} \\ $$$$\:\:\:\int\:\mathrm{sin}\:\mathrm{x}\:\sqrt{\mathrm{1}−\mathrm{sin}\:\mathrm{x}}\:\mathrm{dx}\:? \\ $$

Answered by maths mind last updated on 07/Sep/20

1−sin(x)=(sin((x/2))−cos((x/2)))^2

$$\mathrm{1}−{sin}\left({x}\right)=\left({sin}\left(\frac{{x}}{\mathrm{2}}\right)−{cos}\left(\frac{{x}}{\mathrm{2}}\right)\right)^{\mathrm{2}} \\ $$

Commented by bemath last updated on 07/Sep/20

(√(1−sin x)) = ∣sin (x/2)−cos (x/2)∣

$$\sqrt{\mathrm{1}−\mathrm{sin}\:\mathrm{x}}\:=\:\mid\mathrm{sin}\:\frac{\mathrm{x}}{\mathrm{2}}−\mathrm{cos}\:\frac{\mathrm{x}}{\mathrm{2}}\mid\: \\ $$

Answered by MJS_new last updated on 07/Sep/20

∫sin x (√(1−sin x)) dx=       [t=sin x → dx=(dt/(cos x))]  =∫((t(√(1−t)))/( (√(1−t^2 ))))dt=∫(t/( (√(1+t))))dt=(2/3)(t−2)(√(t+1))  but we′re losing sign changes...  other idea  ∫sin x (√(1−sin x)) dx=       [t=(x/2)−(π/4) → dx=2dt]  =2∫cos 2t (√(1−cos 2t)) dt=  =2∫(2cos^2  t −1)(√(1−(2cos^2  t −1)))dt=  =2(√2)∫(2cos^2  t −1)(√(1−cos^2  t)) dt=  =2(√2)∫(2cos^2  t sin t −sin t)dt=  =(√2)∫(sin 3t −sin t)dt=  =(√2)cos t −((√2)/3)cos 3t =...  but we′re also losing sign changes

$$\int\mathrm{sin}\:{x}\:\sqrt{\mathrm{1}−\mathrm{sin}\:{x}}\:{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{sin}\:{x}\:\rightarrow\:{dx}=\frac{{dt}}{\mathrm{cos}\:{x}}\right] \\ $$$$=\int\frac{{t}\sqrt{\mathrm{1}−{t}}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{dt}=\int\frac{{t}}{\:\sqrt{\mathrm{1}+{t}}}{dt}=\frac{\mathrm{2}}{\mathrm{3}}\left({t}−\mathrm{2}\right)\sqrt{{t}+\mathrm{1}} \\ $$$$\mathrm{but}\:\mathrm{we}'\mathrm{re}\:\mathrm{losing}\:\mathrm{sign}\:\mathrm{changes}... \\ $$$$\mathrm{other}\:\mathrm{idea} \\ $$$$\int\mathrm{sin}\:{x}\:\sqrt{\mathrm{1}−\mathrm{sin}\:{x}}\:{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{{x}}{\mathrm{2}}−\frac{\pi}{\mathrm{4}}\:\rightarrow\:{dx}=\mathrm{2}{dt}\right] \\ $$$$=\mathrm{2}\int\mathrm{cos}\:\mathrm{2}{t}\:\sqrt{\mathrm{1}−\mathrm{cos}\:\mathrm{2}{t}}\:{dt}= \\ $$$$=\mathrm{2}\int\left(\mathrm{2cos}^{\mathrm{2}} \:{t}\:−\mathrm{1}\right)\sqrt{\mathrm{1}−\left(\mathrm{2cos}^{\mathrm{2}} \:{t}\:−\mathrm{1}\right)}{dt}= \\ $$$$=\mathrm{2}\sqrt{\mathrm{2}}\int\left(\mathrm{2cos}^{\mathrm{2}} \:{t}\:−\mathrm{1}\right)\sqrt{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:{t}}\:{dt}= \\ $$$$=\mathrm{2}\sqrt{\mathrm{2}}\int\left(\mathrm{2cos}^{\mathrm{2}} \:{t}\:\mathrm{sin}\:{t}\:−\mathrm{sin}\:{t}\right){dt}= \\ $$$$=\sqrt{\mathrm{2}}\int\left(\mathrm{sin}\:\mathrm{3}{t}\:−\mathrm{sin}\:{t}\right){dt}= \\ $$$$=\sqrt{\mathrm{2}}\mathrm{cos}\:{t}\:−\frac{\sqrt{\mathrm{2}}}{\mathrm{3}}\mathrm{cos}\:\mathrm{3}{t}\:=... \\ $$$$\mathrm{but}\:\mathrm{we}'\mathrm{re}\:\mathrm{also}\:\mathrm{losing}\:\mathrm{sign}\:\mathrm{changes} \\ $$

Commented by MJS_new last updated on 07/Sep/20

found it! we must somehow keep the factor  (√(1−sin x)) in the result.    ∫sin x (√(1−sin x)) dx=       [t=sin x → dx=(dt/(cos x))]  =∫((t(√(1−t)))/( (√(1−t^2 ))))dt=       [u=((√(1−t))/( (√(1−t^2 )))) → dt=−((2(t+1)(√(1−t^2 )))/( (√(1−t))))]  =2∫((1/u^2 )−(1/u^4 ))du=(2/(3u^3 ))−(2/u)=  =((2(t−2)(√(1−t^2 )))/(3(√(1−t))))=  =((2(sin x −2)cos x)/(3(√(1−sin x))))+C

$$\mathrm{found}\:\mathrm{it}!\:\mathrm{we}\:\mathrm{must}\:\mathrm{somehow}\:\mathrm{keep}\:\mathrm{the}\:\mathrm{factor} \\ $$$$\sqrt{\mathrm{1}−\mathrm{sin}\:{x}}\:\mathrm{in}\:\mathrm{the}\:\mathrm{result}. \\ $$$$ \\ $$$$\int\mathrm{sin}\:{x}\:\sqrt{\mathrm{1}−\mathrm{sin}\:{x}}\:{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{sin}\:{x}\:\rightarrow\:{dx}=\frac{{dt}}{\mathrm{cos}\:{x}}\right] \\ $$$$=\int\frac{{t}\sqrt{\mathrm{1}−{t}}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{dt}= \\ $$$$\:\:\:\:\:\left[{u}=\frac{\sqrt{\mathrm{1}−{t}}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\:\rightarrow\:{dt}=−\frac{\mathrm{2}\left({t}+\mathrm{1}\right)\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{\:\sqrt{\mathrm{1}−{t}}}\right] \\ $$$$=\mathrm{2}\int\left(\frac{\mathrm{1}}{{u}^{\mathrm{2}} }−\frac{\mathrm{1}}{{u}^{\mathrm{4}} }\right){du}=\frac{\mathrm{2}}{\mathrm{3}{u}^{\mathrm{3}} }−\frac{\mathrm{2}}{{u}}= \\ $$$$=\frac{\mathrm{2}\left({t}−\mathrm{2}\right)\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{\mathrm{3}\sqrt{\mathrm{1}−{t}}}= \\ $$$$=\frac{\mathrm{2}\left(\mathrm{sin}\:{x}\:−\mathrm{2}\right)\mathrm{cos}\:{x}}{\mathrm{3}\sqrt{\mathrm{1}−\mathrm{sin}\:{x}}}+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com