Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 112318 by Aina Samuel Temidayo last updated on 07/Sep/20

A triangle ABC has the following  properties BC=1, AB=AC and that  the angle bisector from vertex B is  also a median. Find all possible  triangle(s) with its/their  side−lengths and angles.

$$\mathrm{A}\:\mathrm{triangle}\:\mathrm{ABC}\:\mathrm{has}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{properties}\:\mathrm{BC}=\mathrm{1},\:\boldsymbol{\mathrm{AB}}=\boldsymbol{\mathrm{AC}}\:\mathrm{and}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{angle}\:\mathrm{bisector}\:\mathrm{from}\:\mathrm{vertex}\:\mathrm{B}\:\mathrm{is} \\ $$$$\mathrm{also}\:\mathrm{a}\:\mathrm{median}.\:\mathrm{Find}\:\mathrm{all}\:\mathrm{possible} \\ $$$$\mathrm{triangle}\left(\mathrm{s}\right)\:\mathrm{with}\:\mathrm{its}/\mathrm{their} \\ $$$$\mathrm{side}−\mathrm{lengths}\:\mathrm{and}\:\mathrm{angles}. \\ $$

Commented by Aina Samuel Temidayo last updated on 07/Sep/20

Solution please?

$$\mathrm{Solution}\:\mathrm{please}? \\ $$

Commented by mr W last updated on 07/Sep/20

the only possibility:  equilateral triangle  AB=BC=CA=1

$${the}\:{only}\:{possibility}: \\ $$$${equilateral}\:{triangle} \\ $$$${AB}={BC}={CA}=\mathrm{1} \\ $$

Answered by mr W last updated on 07/Sep/20

Commented by mr W last updated on 07/Sep/20

((CD)/(BC))=((sin β)/(sin ∠BDC))  ((DA)/(BA))=((sin β)/(sin ∠BDA))=((sin β)/(sin ∠BDC))=((CD)/(BC))  DA=CD as given  ⇒BC=BA  ⇒BC=BA=CA  ⇒ΔABC is equilateral

$$\frac{{CD}}{{BC}}=\frac{\mathrm{sin}\:\beta}{\mathrm{sin}\:\angle{BDC}} \\ $$$$\frac{{DA}}{{BA}}=\frac{\mathrm{sin}\:\beta}{\mathrm{sin}\:\angle{BDA}}=\frac{\mathrm{sin}\:\beta}{\mathrm{sin}\:\angle{BDC}}=\frac{{CD}}{{BC}} \\ $$$${DA}={CD}\:{as}\:{given} \\ $$$$\Rightarrow{BC}={BA} \\ $$$$\Rightarrow{BC}={BA}={CA} \\ $$$$\Rightarrow\Delta{ABC}\:{is}\:{equilateral} \\ $$

Commented by Aina Samuel Temidayo last updated on 07/Sep/20

Thanks.

$$\mathrm{Thanks}. \\ $$$$ \\ $$

Commented by Aina Samuel Temidayo last updated on 07/Sep/20

Commented by Aina Samuel Temidayo last updated on 07/Sep/20

Can you also help with this please?

$$\mathrm{Can}\:\mathrm{you}\:\mathrm{also}\:\mathrm{help}\:\mathrm{with}\:\mathrm{this}\:\mathrm{please}? \\ $$

Commented by 1549442205PVT last updated on 08/Sep/20

The length of the median from the   vertex A equal to m_a = (1/2)(√(2(b^2 +c^2 )−a^2 ))  The length of the bisector of the angle  ABC^(�)  equal to l_b =(√(ac−((b^2 ac)/((a+c)^2 ))))  The length of the altitude from the  vertex C equal to h_C =(2/c)(√(p(p−a)(p−b)(p−c)))  From the hypothesis we get  m_a =l_b =h_c ⇔(1/2)(√(2(b^2 +c^2 )−a^2 )) =  (√(ac))((√(1−(b^2 /((a+c)^2 )))) )=(2/c)(√(p(p−a)(p−b)(p−c)))

$$\mathrm{The}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{median}\:\mathrm{from}\:\mathrm{the}\: \\ $$$$\mathrm{vertex}\:\mathrm{A}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{m}_{\mathrm{a}} =\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}\left(\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} \right)−\mathrm{a}^{\mathrm{2}} } \\ $$$$\mathrm{The}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bisector}\:\mathrm{of}\:\mathrm{the}\:\mathrm{angle} \\ $$$$\widehat {\mathrm{ABC}}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{l}_{\mathrm{b}} =\sqrt{\mathrm{ac}−\frac{\mathrm{b}^{\mathrm{2}} \mathrm{ac}}{\left(\mathrm{a}+\mathrm{c}\right)^{\mathrm{2}} }} \\ $$$$\mathrm{The}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{altitude}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{vertex}\:\mathrm{C}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{h}_{\mathrm{C}} =\frac{\mathrm{2}}{\mathrm{c}}\sqrt{\mathrm{p}\left(\mathrm{p}−\mathrm{a}\right)\left(\mathrm{p}−\mathrm{b}\right)\left(\mathrm{p}−\mathrm{c}\right)} \\ $$$$\mathrm{From}\:\mathrm{the}\:\mathrm{hypothesis}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{m}_{\mathrm{a}} =\mathrm{l}_{\mathrm{b}} =\mathrm{h}_{\mathrm{c}} \Leftrightarrow\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}\left(\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} \right)−\mathrm{a}^{\mathrm{2}} }\:= \\ $$$$\sqrt{\mathrm{ac}}\left(\sqrt{\mathrm{1}−\frac{\mathrm{b}^{\mathrm{2}} }{\left(\mathrm{a}+\mathrm{c}\right)^{\mathrm{2}} }}\:\right)=\frac{\mathrm{2}}{\mathrm{c}}\sqrt{\mathrm{p}\left(\mathrm{p}−\mathrm{a}\right)\left(\mathrm{p}−\mathrm{b}\right)\left(\mathrm{p}−\mathrm{c}\right)} \\ $$

Commented by Aina Samuel Temidayo last updated on 08/Sep/20

Is it complete?

$$\mathrm{Is}\:\mathrm{it}\:\mathrm{complete}? \\ $$

Commented by 1549442205PVT last updated on 11/Sep/20

You only need  give c one some value   e.x,c=6 and solve equation to find a,b  It can have some  of triangles  satisfying that conditions

$$\mathrm{You}\:\mathrm{only}\:\mathrm{need}\:\:\mathrm{give}\:\mathrm{c}\:\mathrm{one}\:\mathrm{some}\:\mathrm{value}\: \\ $$$$\mathrm{e}.\mathrm{x},\mathrm{c}=\mathrm{6}\:\mathrm{and}\:\mathrm{solve}\:\mathrm{equation}\:\mathrm{to}\:\mathrm{find}\:\mathrm{a},\mathrm{b} \\ $$$$\mathrm{It}\:\mathrm{can}\:\mathrm{have}\:\mathrm{some}\:\:\mathrm{of}\:\mathrm{triangles} \\ $$$$\mathrm{satisfying}\:\mathrm{that}\:\mathrm{conditions} \\ $$

Commented by Aina Samuel Temidayo last updated on 10/Sep/20

I don′t understand.

$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{understand}. \\ $$

Answered by 1549442205PVT last updated on 07/Sep/20

From the hypothesis AB=AC we infer  the triangle ABC is isosceles at the   vertex A.From the hypothesis the bisector   of the angle B^(�)  is also the median we   infer the triangle ABC is isosceles at  the vertex B⇒BA=BC.Therefore we  have AB=AC=BC=1  (In course of secondary school level  proved the result  that:if one triangle  has the bisector belong to any side  that  is also the median(or altitude)  then that triangle is isosceles)

$$\mathrm{From}\:\mathrm{the}\:\mathrm{hypothesis}\:\mathrm{AB}=\mathrm{AC}\:\mathrm{we}\:\mathrm{infer} \\ $$$$\mathrm{the}\:\mathrm{triangle}\:\mathrm{ABC}\:\mathrm{is}\:\mathrm{isosceles}\:\mathrm{at}\:\mathrm{the}\: \\ $$$$\mathrm{vertex}\:\mathrm{A}.\mathrm{From}\:\mathrm{the}\:\mathrm{hypothesis}\:\mathrm{the}\:\mathrm{bisector}\: \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{angle}\:\widehat {\mathrm{B}}\:\mathrm{is}\:\mathrm{also}\:\mathrm{the}\:\mathrm{median}\:\mathrm{we}\: \\ $$$$\mathrm{infer}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{ABC}\:\mathrm{is}\:\mathrm{isosceles}\:\mathrm{at} \\ $$$$\mathrm{the}\:\mathrm{vertex}\:\mathrm{B}\Rightarrow\mathrm{BA}=\mathrm{BC}.\mathrm{Therefore}\:\mathrm{we} \\ $$$$\mathrm{have}\:\mathrm{AB}=\mathrm{AC}=\mathrm{BC}=\mathrm{1} \\ $$$$\left(\mathrm{In}\:\mathrm{course}\:\mathrm{of}\:\mathrm{secondary}\:\mathrm{school}\:\mathrm{level}\right. \\ $$$$\mathrm{proved}\:\mathrm{the}\:\mathrm{result}\:\:\mathrm{that}:\mathrm{if}\:\mathrm{one}\:\mathrm{triangle} \\ $$$$\mathrm{has}\:\mathrm{the}\:\mathrm{bisector}\:\mathrm{belong}\:\mathrm{to}\:\mathrm{any}\:\mathrm{side} \\ $$$$\mathrm{that}\:\:\mathrm{is}\:\mathrm{also}\:\mathrm{the}\:\mathrm{median}\left(\mathrm{or}\:\mathrm{altitude}\right) \\ $$$$\left.\mathrm{then}\:\mathrm{that}\:\mathrm{triangle}\:\mathrm{is}\:\mathrm{isosceles}\right) \\ $$

Commented by Aina Samuel Temidayo last updated on 07/Sep/20

Thanks.

$$\mathrm{Thanks}. \\ $$

Commented by Aina Samuel Temidayo last updated on 07/Sep/20

Commented by Aina Samuel Temidayo last updated on 07/Sep/20

Please help @1549442205PVT, @mr  W

$$\mathrm{Please}\:\mathrm{help}\:@\mathrm{1549442205PVT},\:@\mathrm{mr} \\ $$$$\mathrm{W} \\ $$

Commented by 1549442205PVT last updated on 08/Sep/20

2)Given x,y,z∈N;yz+x is prime,  (yz+x)∣(zx+y),(yz+x)∣(xy+z)(∗)  We need find all possible values of  P=(((xy+z)((zx+y))/((yz+x)^2 ))  i)Case  z=0 then P=((xy^2 )/x^2 )=(y^2 /x)=m^2   where y=mx,  x∈P(prime)  ii)Case y=0 then P=((xz^2 )/x^2 )=(z^2 /x)=n^2   where  z=nx,x∈P(prime)  iii)Case y,z≠0  From the hypothesis we have  zx+y=m(yz+x),xy+z=n(yz+x)  where m,n∈N^∗ .Adding two equalities  we get x(y+z)+y+z=(m+n)(yz+x)  ⇔(x+1)(y+z)=(m+n)(yz+x)  Since yz+x is prime we infer that  (yz+x)∣(x+1) or (yz+x)∣(y+z)  a) If (yz+x)∣(x+1)then yz+x≤x+1  ⇒yz≤1⇒y=z=1(since y,z∈N,≠0)  Then P=(((x+1)^2 )/((x+1)^2 ))=1(Here we see that  has infinite x so that x+1 is prime)  b)If (yz+x)∣(y+z)then yz+x≤y+z  ⇔(y−1)(z−1)≤1−x(1)  Since y−1≥0,z−1≥0,1−x≤0 ,we see  that the equality (1)ocurrs if and only  if x=y=z=1.Then  P=((2.2)/2^2 )=1  Combining all cases we have  P=m^2   for z=0,y=mx,x∈P  P=n^(2 ) for y=0,z=nx,x∈P   or P=1 when y=z=1, x∈P  or x=y=z=1  3)Find ∣{n∈N∣n≤100,4!∣2^n −n^3 }∣  We need find n∈N∣n≤100 and  A=2^n −n^3 ⋮4!=24  If n is odd then 2^n −n^3 is odd number  ,so A isn′t divisible by 24.Hence,n  must be an even number ,infer  n=2k⇒A=2^(2k) −(2k)^3 =4^k −8k^3 (1)  We need find k so that A⋮24  We need must have 0≤A≤100,so  k=5 because when k=4 we get  A=4^4 −8.4^3 <0.When k=6 we get  A=4^6 −8.6^3 =2368  when k=5 we get A=4^5 −8.5^3 =  1024−8.125=24⋮4!  Thus,has unique n=10 satisfying  the condition of our problem:n∈N,  n≤100,2^n −n^3 ⋮4!.Therefore  ∣{n∈N∣n≤100,2^n −n^3 ⋮4!}∣=1

$$\left.\mathrm{2}\right)\mathrm{Given}\:\mathrm{x},\mathrm{y},\mathrm{z}\in\mathrm{N};\mathrm{yz}+\mathrm{x}\:\mathrm{is}\:\mathrm{prime}, \\ $$$$\left(\mathrm{yz}+\mathrm{x}\right)\mid\left(\mathrm{zx}+\mathrm{y}\right),\left(\mathrm{yz}+\mathrm{x}\right)\mid\left(\mathrm{xy}+\mathrm{z}\right)\left(\ast\right) \\ $$$$\mathrm{We}\:\mathrm{need}\:\mathrm{find}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of} \\ $$$$\mathrm{P}=\frac{\left(\mathrm{xy}+\mathrm{z}\right)\left(\left(\mathrm{zx}+\mathrm{y}\right)\right.}{\left(\mathrm{yz}+\mathrm{x}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{i}\right)\mathrm{Case}\:\:\mathrm{z}=\mathrm{0}\:\mathrm{then}\:\mathrm{P}=\frac{\mathrm{xy}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} }=\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{x}}=\mathrm{m}^{\mathrm{2}} \\ $$$$\mathrm{where}\:\mathrm{y}=\mathrm{mx},\:\:\mathrm{x}\in\mathscr{P}\left(\mathrm{prime}\right) \\ $$$$\left.\mathrm{ii}\right)\mathrm{Case}\:\mathrm{y}=\mathrm{0}\:\mathrm{then}\:\mathrm{P}=\frac{\mathrm{xz}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} }=\frac{\mathrm{z}^{\mathrm{2}} }{\mathrm{x}}=\mathrm{n}^{\mathrm{2}} \\ $$$$\mathrm{where}\:\:\mathrm{z}=\mathrm{nx},\mathrm{x}\in\mathscr{P}\left(\mathrm{prime}\right) \\ $$$$\left.\mathrm{iii}\right)\mathrm{Case}\:\mathrm{y},\mathrm{z}\neq\mathrm{0} \\ $$$$\mathrm{From}\:\mathrm{the}\:\mathrm{hypothesis}\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{zx}+\mathrm{y}=\mathrm{m}\left(\mathrm{yz}+\mathrm{x}\right),\mathrm{xy}+\mathrm{z}=\mathrm{n}\left(\mathrm{yz}+\mathrm{x}\right) \\ $$$$\mathrm{where}\:\mathrm{m},\mathrm{n}\in\mathrm{N}^{\ast} .\mathrm{Adding}\:\mathrm{two}\:\mathrm{equalities} \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{x}\left(\mathrm{y}+\mathrm{z}\right)+\mathrm{y}+\mathrm{z}=\left(\mathrm{m}+\mathrm{n}\right)\left(\mathrm{yz}+\mathrm{x}\right) \\ $$$$\Leftrightarrow\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{y}+\mathrm{z}\right)=\left(\mathrm{m}+\mathrm{n}\right)\left(\mathrm{yz}+\mathrm{x}\right) \\ $$$$\mathrm{Since}\:\mathrm{yz}+\mathrm{x}\:\mathrm{is}\:\mathrm{prime}\:\mathrm{we}\:\mathrm{infer}\:\mathrm{that} \\ $$$$\left(\mathrm{yz}+\mathrm{x}\right)\mid\left(\mathrm{x}+\mathrm{1}\right)\:\mathrm{or}\:\left(\mathrm{yz}+\mathrm{x}\right)\mid\left(\mathrm{y}+\mathrm{z}\right) \\ $$$$\left.\mathrm{a}\right)\:\mathrm{If}\:\left(\mathrm{yz}+\mathrm{x}\right)\mid\left(\mathrm{x}+\mathrm{1}\right)\mathrm{then}\:\mathrm{yz}+\mathrm{x}\leqslant\mathrm{x}+\mathrm{1} \\ $$$$\Rightarrow\mathrm{yz}\leqslant\mathrm{1}\Rightarrow\mathrm{y}=\mathrm{z}=\mathrm{1}\left(\mathrm{since}\:\mathrm{y},\mathrm{z}\in\mathrm{N},\neq\mathrm{0}\right) \\ $$$$\mathrm{Then}\:\mathrm{P}=\frac{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{1}\left(\mathrm{Here}\:\mathrm{we}\:\mathrm{see}\:\mathrm{that}\right. \\ $$$$\left.\mathrm{has}\:\mathrm{infinite}\:\mathrm{x}\:\mathrm{so}\:\mathrm{that}\:\mathrm{x}+\mathrm{1}\:\mathrm{is}\:\mathrm{prime}\right) \\ $$$$\left.\mathrm{b}\right)\mathrm{If}\:\left(\mathrm{yz}+\mathrm{x}\right)\mid\left(\mathrm{y}+\mathrm{z}\right)\mathrm{then}\:\mathrm{yz}+\mathrm{x}\leqslant\mathrm{y}+\mathrm{z} \\ $$$$\Leftrightarrow\left(\mathrm{y}−\mathrm{1}\right)\left(\mathrm{z}−\mathrm{1}\right)\leqslant\mathrm{1}−\mathrm{x}\left(\mathrm{1}\right) \\ $$$$\mathrm{Since}\:\mathrm{y}−\mathrm{1}\geqslant\mathrm{0},\mathrm{z}−\mathrm{1}\geqslant\mathrm{0},\mathrm{1}−\mathrm{x}\leqslant\mathrm{0}\:,\mathrm{we}\:\mathrm{see} \\ $$$$\mathrm{that}\:\mathrm{the}\:\mathrm{equality}\:\left(\mathrm{1}\right)\mathrm{ocurrs}\:\mathrm{if}\:\mathrm{and}\:\mathrm{only} \\ $$$$\mathrm{if}\:\mathrm{x}=\mathrm{y}=\mathrm{z}=\mathrm{1}.\mathrm{Then} \\ $$$$\mathrm{P}=\frac{\mathrm{2}.\mathrm{2}}{\mathrm{2}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\mathrm{Combining}\:\mathrm{all}\:\mathrm{cases}\:\mathrm{we}\:\mathrm{have} \\ $$$$\boldsymbol{\mathrm{P}}=\boldsymbol{\mathrm{m}}^{\mathrm{2}} \:\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{z}}=\mathrm{0},\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{mx}},\boldsymbol{\mathrm{x}}\in\mathscr{P} \\ $$$$\boldsymbol{\mathrm{P}}=\boldsymbol{\mathrm{n}}^{\mathrm{2}\:} \boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{y}}=\mathrm{0},\boldsymbol{\mathrm{z}}=\boldsymbol{\mathrm{nx}},\boldsymbol{\mathrm{x}}\in\mathscr{P} \\ $$$$\:\boldsymbol{\mathrm{or}}\:\boldsymbol{\mathrm{P}}=\mathrm{1}\:\boldsymbol{\mathrm{when}}\:\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{z}}=\mathrm{1},\:\boldsymbol{\mathrm{x}}\in\mathscr{P} \\ $$$$\boldsymbol{\mathrm{or}}\:\boldsymbol{\mathrm{x}}=\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{z}}=\mathrm{1} \\ $$$$\left.\mathrm{3}\right)\mathrm{Find}\:\mid\left\{\mathrm{n}\in\mathrm{N}\mid\mathrm{n}\leqslant\mathrm{100},\mathrm{4}!\mid\mathrm{2}^{\mathrm{n}} −\mathrm{n}^{\mathrm{3}} \right\}\mid \\ $$$$\mathrm{We}\:\mathrm{need}\:\mathrm{find}\:\mathrm{n}\in\mathrm{N}\mid\mathrm{n}\leqslant\mathrm{100}\:\mathrm{and} \\ $$$$\mathrm{A}=\mathrm{2}^{\mathrm{n}} −\mathrm{n}^{\mathrm{3}} \vdots\mathrm{4}!=\mathrm{24} \\ $$$$\mathrm{If}\:\mathrm{n}\:\mathrm{is}\:\mathrm{odd}\:\mathrm{then}\:\mathrm{2}^{\mathrm{n}} −\mathrm{n}^{\mathrm{3}} \mathrm{is}\:\mathrm{odd}\:\mathrm{number} \\ $$$$,\mathrm{so}\:\mathrm{A}\:\mathrm{isn}'\mathrm{t}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{24}.\mathrm{Hence},\mathrm{n} \\ $$$$\mathrm{must}\:\mathrm{be}\:\mathrm{an}\:\mathrm{even}\:\mathrm{number}\:,\mathrm{infer} \\ $$$$\mathrm{n}=\mathrm{2k}\Rightarrow\mathrm{A}=\mathrm{2}^{\mathrm{2k}} −\left(\mathrm{2k}\right)^{\mathrm{3}} =\mathrm{4}^{\mathrm{k}} −\mathrm{8k}^{\mathrm{3}} \left(\mathrm{1}\right) \\ $$$$\mathrm{We}\:\mathrm{need}\:\mathrm{find}\:\mathrm{k}\:\mathrm{so}\:\mathrm{that}\:\mathrm{A}\vdots\mathrm{24} \\ $$$$\mathrm{We}\:\mathrm{need}\:\mathrm{must}\:\mathrm{have}\:\mathrm{0}\leqslant\mathrm{A}\leqslant\mathrm{100},\mathrm{so} \\ $$$$\mathrm{k}=\mathrm{5}\:\mathrm{because}\:\mathrm{when}\:\mathrm{k}=\mathrm{4}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{A}=\mathrm{4}^{\mathrm{4}} −\mathrm{8}.\mathrm{4}^{\mathrm{3}} <\mathrm{0}.\mathrm{When}\:\mathrm{k}=\mathrm{6}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{A}=\mathrm{4}^{\mathrm{6}} −\mathrm{8}.\mathrm{6}^{\mathrm{3}} =\mathrm{2368} \\ $$$$\mathrm{when}\:\mathrm{k}=\mathrm{5}\:\mathrm{we}\:\mathrm{get}\:\mathrm{A}=\mathrm{4}^{\mathrm{5}} −\mathrm{8}.\mathrm{5}^{\mathrm{3}} = \\ $$$$\mathrm{1024}−\mathrm{8}.\mathrm{125}=\mathrm{24}\vdots\mathrm{4}! \\ $$$$\mathrm{Thus},\mathrm{has}\:\mathrm{unique}\:\mathrm{n}=\mathrm{10}\:\mathrm{satisfying} \\ $$$$\mathrm{the}\:\mathrm{condition}\:\mathrm{of}\:\mathrm{our}\:\mathrm{problem}:\mathrm{n}\in\mathrm{N}, \\ $$$$\boldsymbol{\mathrm{n}}\leqslant\mathrm{100},\mathrm{2}^{\boldsymbol{\mathrm{n}}} −\boldsymbol{\mathrm{n}}^{\mathrm{3}} \vdots\mathrm{4}!.\mathrm{Therefore} \\ $$$$\mid\left\{\boldsymbol{\mathrm{n}}\in\boldsymbol{\mathrm{N}}\mid\boldsymbol{\mathrm{n}}\leqslant\mathrm{100},\mathrm{2}^{\boldsymbol{\mathrm{n}}} −\boldsymbol{\mathrm{n}}^{\mathrm{3}} \vdots\mathrm{4}!\right\}\mid=\mathrm{1} \\ $$

Commented by Aina Samuel Temidayo last updated on 07/Sep/20

Thanks. Please do the rest.

$$\mathrm{Thanks}.\:\mathrm{Please}\:\mathrm{do}\:\mathrm{the}\:\mathrm{rest}. \\ $$

Commented by Aina Samuel Temidayo last updated on 07/Sep/20

Why did you change the solution for  No. 2 number theory? What′s wrong  with the first? We weren′t asked to  find values for x,y and z.

$$\mathrm{Why}\:\mathrm{did}\:\mathrm{you}\:\mathrm{change}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{for} \\ $$$$\mathrm{No}.\:\mathrm{2}\:\mathrm{number}\:\mathrm{theory}?\:\mathrm{What}'\mathrm{s}\:\mathrm{wrong} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{first}?\:\mathrm{We}\:\mathrm{weren}'\mathrm{t}\:\mathrm{asked}\:\mathrm{to} \\ $$$$\mathrm{find}\:\mathrm{values}\:\mathrm{for}\:\mathrm{x},\mathrm{y}\:\mathrm{and}\:\mathrm{z}. \\ $$

Commented by Aina Samuel Temidayo last updated on 07/Sep/20

x,y,z are natural numbers. They can′t  be 0. I think your first solution is  correct. Please send it again.

$$\mathrm{x},\mathrm{y},\mathrm{z}\:\mathrm{are}\:\mathrm{natural}\:\mathrm{numbers}.\:\mathrm{They}\:\mathrm{can}'\mathrm{t} \\ $$$$\mathrm{be}\:\mathrm{0}.\:\mathrm{I}\:\mathrm{think}\:\mathrm{your}\:\mathrm{first}\:\mathrm{solution}\:\mathrm{is} \\ $$$$\mathrm{correct}.\:\mathrm{Please}\:\mathrm{send}\:\mathrm{it}\:\mathrm{again}. \\ $$

Commented by 1549442205PVT last updated on 07/Sep/20

Ok,excuse me .I mistake.Need note  the condition (∗).Set of natural  numbers by new definition include  zero N={0,1,2,.....},N^∗ ={1,2,3,...}

$$\mathrm{Ok},\mathrm{excuse}\:\mathrm{me}\:.\mathrm{I}\:\mathrm{mistake}.\mathrm{Need}\:\mathrm{note} \\ $$$$\mathrm{the}\:\mathrm{condition}\:\left(\ast\right).\mathrm{Set}\:\mathrm{of}\:\mathrm{natural} \\ $$$$\mathrm{numbers}\:\mathrm{by}\:\mathrm{new}\:\mathrm{definition}\:\mathrm{include} \\ $$$$\mathrm{zero}\:\mathrm{N}=\left\{\mathrm{0},\mathrm{1},\mathrm{2},.....\right\},\mathrm{N}^{\ast} =\left\{\mathrm{1},\mathrm{2},\mathrm{3},...\right\} \\ $$

Commented by Aina Samuel Temidayo last updated on 07/Sep/20

But you are going against the  question.

$$\mathrm{But}\:\mathrm{you}\:\mathrm{are}\:\mathrm{going}\:\mathrm{against}\:\mathrm{the} \\ $$$$\mathrm{question}. \\ $$

Commented by 1549442205PVT last updated on 08/Sep/20

I answered  correctly requirements of  question

$$\mathrm{I}\:\mathrm{answered}\:\:\mathrm{correctly}\:\mathrm{requirements}\:\mathrm{of} \\ $$$$\mathrm{question}\: \\ $$

Commented by Aina Samuel Temidayo last updated on 08/Sep/20

Answer to no. 3 is 17

$$\mathrm{Answer}\:\mathrm{to}\:\mathrm{no}.\:\mathrm{3}\:\mathrm{is}\:\mathrm{17} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com