Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 112364 by john santu last updated on 07/Sep/20

(1) Let z = (√(3+4i)) + (√(−3−4i)) , where  square root is taken with positive   real part. Then Re(z) is _  (a)3     (b) 4     (c) 2     (d) 1  (2)Suppose a,b,c are in AP and a^2 ,b^2 ,c^2   are in GP. If a<b<c and a+b+c=(3/2),  then a = _  (a) (1/(2(√2)))     (b) (1/(2(√3)))    (c) (((√3)−2)/(2(√3)))    (d) (((√2)−2)/(2(√2)))  (3)A man sent 7 letters to his 7 friend  . The letters are kept in addressed   envelopes at random. The probability  that 3 friend receive correct letters  and 4 letters go to wrong destination  is _  (a) (1/8)     (b) (1/(16))   (c) (3/(32))     (d) (5/(64))

$$\left(\mathrm{1}\right)\:{Let}\:{z}\:=\:\sqrt{\mathrm{3}+\mathrm{4}{i}}\:+\:\sqrt{−\mathrm{3}−\mathrm{4}{i}}\:,\:{where} \\ $$$${square}\:{root}\:{is}\:{taken}\:{with}\:{positive}\: \\ $$$${real}\:{part}.\:{Then}\:{Re}\left({z}\right)\:{is}\:\_ \\ $$$$\left({a}\right)\mathrm{3}\:\:\:\:\:\left({b}\right)\:\mathrm{4}\:\:\:\:\:\left({c}\right)\:\mathrm{2}\:\:\:\:\:\left({d}\right)\:\mathrm{1} \\ $$$$\left(\mathrm{2}\right){Suppose}\:{a},{b},{c}\:{are}\:{in}\:{AP}\:{and}\:{a}^{\mathrm{2}} ,{b}^{\mathrm{2}} ,{c}^{\mathrm{2}} \\ $$$${are}\:{in}\:{GP}.\:{If}\:{a}<{b}<{c}\:{and}\:{a}+{b}+{c}=\frac{\mathrm{3}}{\mathrm{2}}, \\ $$$${then}\:{a}\:=\:\_ \\ $$$$\left({a}\right)\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\:\:\:\:\left({b}\right)\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\:\:\:\:\left({c}\right)\:\frac{\sqrt{\mathrm{3}}−\mathrm{2}}{\mathrm{2}\sqrt{\mathrm{3}}}\:\:\:\:\left({d}\right)\:\frac{\sqrt{\mathrm{2}}−\mathrm{2}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\left(\mathrm{3}\right){A}\:{man}\:{sent}\:\mathrm{7}\:{letters}\:{to}\:{his}\:\mathrm{7}\:{friend} \\ $$$$.\:{The}\:{letters}\:{are}\:{kept}\:{in}\:{addressed}\: \\ $$$${envelopes}\:{at}\:{random}.\:{The}\:{probability} \\ $$$${that}\:\mathrm{3}\:{friend}\:{receive}\:{correct}\:{letters} \\ $$$${and}\:\mathrm{4}\:{letters}\:{go}\:{to}\:{wrong}\:{destination} \\ $$$${is}\:\_ \\ $$$$\left({a}\right)\:\frac{\mathrm{1}}{\mathrm{8}}\:\:\:\:\:\left({b}\right)\:\frac{\mathrm{1}}{\mathrm{16}}\:\:\:\left({c}\right)\:\frac{\mathrm{3}}{\mathrm{32}}\:\:\:\:\:\left({d}\right)\:\frac{\mathrm{5}}{\mathrm{64}} \\ $$

Answered by MJS_new last updated on 07/Sep/20

(√z) is unique  (√(3+4i))=2+i  (√(−3−4i))=1−2i  ⇒ z=3−i

$$\sqrt{{z}}\:\mathrm{is}\:\mathrm{unique} \\ $$$$\sqrt{\mathrm{3}+\mathrm{4i}}=\mathrm{2}+\mathrm{i} \\ $$$$\sqrt{−\mathrm{3}−\mathrm{4i}}=\mathrm{1}−\mathrm{2i} \\ $$$$\Rightarrow\:{z}=\mathrm{3}−\mathrm{i} \\ $$

Commented by MJS_new last updated on 07/Sep/20

x^2 =4  we′re looking for all possible numbers x which  solve the equation ⇒ x=±2  2^2  we just square without caring if or if not  (any other number)^2 =2^2 =4    (√x)=2  we′re looking for all possible numbers x which  solve the equation ⇒ x=4 (try to find another  solution x∈C)  (√4) we just extract the root without caring if  or if not (√(any other number))=(√4)=2    so there′s no equation given, nothing to  solve when we just calculate 7^2  or (√(49))    btw. there′s no solution to (√x)=−4 (try it)    z=re^(iθ)  with r≥0 and θ∈R  z^q =r^q e^(iqθ)  nothing to solve with z, q given  there′s an exception made to keep geometric  problems real:  z^(1/n)  with z<0 and n=2k+1∧k∈Z  ⇒ z=−(−z)^(1/n)   or z=re^(iπ)  ⇒ z^(1/(2k+1)) =r^(1/(2k+1)) e^(iπ)  not r^(1/(2k+1)) e^((iπ)/(2k+1))

$${x}^{\mathrm{2}} =\mathrm{4} \\ $$$$\mathrm{we}'\mathrm{re}\:\mathrm{looking}\:\mathrm{for}\:{all}\:{possible}\:\mathrm{numbers}\:{x}\:\mathrm{which} \\ $$$$\mathrm{solve}\:\mathrm{the}\:\mathrm{equation}\:\Rightarrow\:{x}=\pm\mathrm{2} \\ $$$$\mathrm{2}^{\mathrm{2}} \:\mathrm{we}\:\mathrm{just}\:\mathrm{square}\:\mathrm{without}\:\mathrm{caring}\:\mathrm{if}\:\mathrm{or}\:\mathrm{if}\:\mathrm{not} \\ $$$$\left(\mathrm{any}\:\mathrm{other}\:\mathrm{number}\right)^{\mathrm{2}} =\mathrm{2}^{\mathrm{2}} =\mathrm{4} \\ $$$$ \\ $$$$\sqrt{{x}}=\mathrm{2} \\ $$$$\mathrm{we}'\mathrm{re}\:\mathrm{looking}\:\mathrm{for}\:{all}\:{possible}\:\mathrm{numbers}\:{x}\:\mathrm{which} \\ $$$$\mathrm{solve}\:\mathrm{the}\:\mathrm{equation}\:\Rightarrow\:{x}=\mathrm{4}\:\left(\mathrm{try}\:\mathrm{to}\:\mathrm{find}\:\mathrm{another}\right. \\ $$$$\left.\mathrm{solution}\:{x}\in\mathbb{C}\right) \\ $$$$\sqrt{\mathrm{4}}\:\mathrm{we}\:\mathrm{just}\:\mathrm{extract}\:\mathrm{the}\:\mathrm{root}\:\mathrm{without}\:\mathrm{caring}\:\mathrm{if} \\ $$$$\mathrm{or}\:\mathrm{if}\:\mathrm{not}\:\sqrt{\mathrm{any}\:\mathrm{other}\:\mathrm{number}}=\sqrt{\mathrm{4}}=\mathrm{2} \\ $$$$ \\ $$$$\mathrm{so}\:\mathrm{there}'\mathrm{s}\:\mathrm{no}\:\mathrm{equation}\:\mathrm{given},\:\mathrm{nothing}\:\mathrm{to} \\ $$$$\mathrm{solve}\:\mathrm{when}\:\mathrm{we}\:\mathrm{just}\:\mathrm{calculate}\:\mathrm{7}^{\mathrm{2}} \:\mathrm{or}\:\sqrt{\mathrm{49}} \\ $$$$ \\ $$$$\mathrm{btw}.\:\mathrm{there}'\mathrm{s}\:\mathrm{no}\:\mathrm{solution}\:\mathrm{to}\:\sqrt{{x}}=−\mathrm{4}\:\left(\mathrm{try}\:\mathrm{it}\right) \\ $$$$ \\ $$$${z}={r}\mathrm{e}^{\mathrm{i}\theta} \:\mathrm{with}\:{r}\geqslant\mathrm{0}\:\mathrm{and}\:\theta\in\mathbb{R} \\ $$$${z}^{{q}} ={r}^{{q}} \mathrm{e}^{\mathrm{i}{q}\theta} \:\mathrm{nothing}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{with}\:{z},\:{q}\:\mathrm{given} \\ $$$$\mathrm{there}'\mathrm{s}\:\mathrm{an}\:\mathrm{exception}\:\mathrm{made}\:\mathrm{to}\:\mathrm{keep}\:\mathrm{geometric} \\ $$$$\mathrm{problems}\:\mathrm{real}: \\ $$$${z}^{\frac{\mathrm{1}}{{n}}} \:\mathrm{with}\:{z}<\mathrm{0}\:\mathrm{and}\:{n}=\mathrm{2}{k}+\mathrm{1}\wedge{k}\in\mathbb{Z} \\ $$$$\Rightarrow\:{z}=−\left(−{z}\right)^{\frac{\mathrm{1}}{{n}}} \\ $$$$\mathrm{or}\:{z}={r}\mathrm{e}^{\mathrm{i}\pi} \:\Rightarrow\:{z}^{\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}} ={r}^{\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}} \mathrm{e}^{\mathrm{i}\pi} \:\boldsymbol{{not}}\:{r}^{\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}} \mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{2}{k}+\mathrm{1}}} \\ $$

Commented by john santu last updated on 08/Sep/20

greatt

$${greatt} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com