Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 112366 by mathdave last updated on 07/Sep/20

Answered by mathmax by abdo last updated on 07/Sep/20

let S_n =n Σ_(k=1) ^(n−1)  ((ln(k+n)−ln(n))/(n^2  +k^2 )) ⇒  S_n =(1/n) Σ_(k=1) ^(n−1)  ((ln(((n+k)/n)))/(1+(k^2 /n^2 ))) =(1/n) Σ_(k=1) ^(n−1)  ((ln(1+(k/n)))/(1+((k/n))^2 )) so S_n is a Rieman sum  and lim_(n→+∞)  S_n =∫_0 ^1  ((ln(1+x))/(1+x^2 )) dx  changement x=tant give  ∫_0 ^1  ((ln(1+x))/(1+x^2 ))dx =∫_0 ^(π/4) ((ln(1+tant))/(1+tan^2 t))(1+tan^2 t)dt =∫_0 ^(π/4)  ln(1+tan(t))dt  =_(t=(π/4)−u)     ∫_0 ^(π/4) ln(1+tan((π/4)−u))du =∫_0 ^(π/4) ln(1+((1−tanu)/(1+tanu)))du  =∫_0 ^(π/4)  ln((2/(1+tanu)))du =(π/4)ln(2)−∫_0 ^(π/4)  ln(1+tanu)du ⇒  2∫_0 ^(π/4)  ln(1+tanu)du =(π/4)ln(2) ⇒∫_0 ^(π/4) ln(1+tanu)du =(π/8)ln(2)  =∫_0 ^1  ((ln(1+x))/(1+x^2 ))dx =lim_(n→+∞)  S_n

$$\mathrm{let}\:\mathrm{S}_{\mathrm{n}} =\mathrm{n}\:\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}−\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{k}+\mathrm{n}\right)−\mathrm{ln}\left(\mathrm{n}\right)}{\mathrm{n}^{\mathrm{2}} \:+\mathrm{k}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\mathrm{S}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{n}}\:\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}−\mathrm{1}} \:\frac{\mathrm{ln}\left(\frac{\mathrm{n}+\mathrm{k}}{\mathrm{n}}\right)}{\mathrm{1}+\frac{\mathrm{k}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{2}} }}\:=\frac{\mathrm{1}}{\mathrm{n}}\:\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}−\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)}{\mathrm{1}+\left(\frac{\mathrm{k}}{\mathrm{n}}\right)^{\mathrm{2}} }\:\mathrm{so}\:\mathrm{S}_{\mathrm{n}} \mathrm{is}\:\mathrm{a}\:\mathrm{Rieman}\:\mathrm{sum} \\ $$$$\mathrm{and}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{S}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:\:\mathrm{changement}\:\mathrm{x}=\mathrm{tant}\:\mathrm{give} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{tant}\right)}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{t}}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{t}\right)\mathrm{dt}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\mathrm{ln}\left(\mathrm{1}+\mathrm{tan}\left(\mathrm{t}\right)\right)\mathrm{dt} \\ $$$$=_{\mathrm{t}=\frac{\pi}{\mathrm{4}}−\mathrm{u}} \:\:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{1}+\mathrm{tan}\left(\frac{\pi}{\mathrm{4}}−\mathrm{u}\right)\right)\mathrm{du}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}−\mathrm{tanu}}{\mathrm{1}+\mathrm{tanu}}\right)\mathrm{du} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\mathrm{ln}\left(\frac{\mathrm{2}}{\mathrm{1}+\mathrm{tanu}}\right)\mathrm{du}\:=\frac{\pi}{\mathrm{4}}\mathrm{ln}\left(\mathrm{2}\right)−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\mathrm{ln}\left(\mathrm{1}+\mathrm{tanu}\right)\mathrm{du}\:\Rightarrow \\ $$$$\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\mathrm{ln}\left(\mathrm{1}+\mathrm{tanu}\right)\mathrm{du}\:=\frac{\pi}{\mathrm{4}}\mathrm{ln}\left(\mathrm{2}\right)\:\Rightarrow\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{1}+\mathrm{tanu}\right)\mathrm{du}\:=\frac{\pi}{\mathrm{8}}\mathrm{ln}\left(\mathrm{2}\right) \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:=\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{S}_{\mathrm{n}} \\ $$

Commented by mathdave last updated on 08/Sep/20

nice idea

$${nice}\:{idea} \\ $$

Commented by mathmax by abdo last updated on 08/Sep/20

thanks

$$\mathrm{thanks} \\ $$

Commented by Tawa11 last updated on 06/Sep/21

great sir

$$\mathrm{great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com