Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 112366 by mathdave last updated on 07/Sep/20

Answered by mathmax by abdo last updated on 07/Sep/20

let S_n =n Σ_(k=1) ^(n−1)  ((ln(k+n)−ln(n))/(n^2  +k^2 )) ⇒  S_n =(1/n) Σ_(k=1) ^(n−1)  ((ln(((n+k)/n)))/(1+(k^2 /n^2 ))) =(1/n) Σ_(k=1) ^(n−1)  ((ln(1+(k/n)))/(1+((k/n))^2 )) so S_n is a Rieman sum  and lim_(n→+∞)  S_n =∫_0 ^1  ((ln(1+x))/(1+x^2 )) dx  changement x=tant give  ∫_0 ^1  ((ln(1+x))/(1+x^2 ))dx =∫_0 ^(π/4) ((ln(1+tant))/(1+tan^2 t))(1+tan^2 t)dt =∫_0 ^(π/4)  ln(1+tan(t))dt  =_(t=(π/4)−u)     ∫_0 ^(π/4) ln(1+tan((π/4)−u))du =∫_0 ^(π/4) ln(1+((1−tanu)/(1+tanu)))du  =∫_0 ^(π/4)  ln((2/(1+tanu)))du =(π/4)ln(2)−∫_0 ^(π/4)  ln(1+tanu)du ⇒  2∫_0 ^(π/4)  ln(1+tanu)du =(π/4)ln(2) ⇒∫_0 ^(π/4) ln(1+tanu)du =(π/8)ln(2)  =∫_0 ^1  ((ln(1+x))/(1+x^2 ))dx =lim_(n→+∞)  S_n

letSn=nk=1n1ln(k+n)ln(n)n2+k2Sn=1nk=1n1ln(n+kn)1+k2n2=1nk=1n1ln(1+kn)1+(kn)2soSnisaRiemansumandlimn+Sn=01ln(1+x)1+x2dxchangementx=tantgive01ln(1+x)1+x2dx=0π4ln(1+tant)1+tan2t(1+tan2t)dt=0π4ln(1+tan(t))dt=t=π4u0π4ln(1+tan(π4u))du=0π4ln(1+1tanu1+tanu)du=0π4ln(21+tanu)du=π4ln(2)0π4ln(1+tanu)du20π4ln(1+tanu)du=π4ln(2)0π4ln(1+tanu)du=π8ln(2)=01ln(1+x)1+x2dx=limn+Sn

Commented by mathdave last updated on 08/Sep/20

nice idea

niceidea

Commented by mathmax by abdo last updated on 08/Sep/20

thanks

thanks

Commented by Tawa11 last updated on 06/Sep/21

great sir

greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com