Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 112446 by mathmax by abdo last updated on 07/Sep/20

find ∫_0 ^1  ((ln(1+x^2 ))/(1+x))dx

find01ln(1+x2)1+xdx

Answered by mathdave last updated on 08/Sep/20

solution to   let I=∫_0 ^1 ((ln(1+x^2 ))/(1+x))dx   using IBP  I=∣ln(1+x)ln(1+x^2 )∣_0 ^1 −2∫_0 ^1 ((xln(1+x))/(1+x^2 ))dx  I=ln^2 (2)−2I_1 ........(1)  Let   I_1 =∫_0 ^1 ((xln(1+x))/(1+x^2 ))dx=∫_0 ^1 [(((1+x^2 −1))/(1+x^2 ))]((ln(1+x))/x)dx  I_1 =∫_0 ^1 ((ln(1+x))/x)dx−∫_0 ^1 ((ln(1+x))/(x(1+x^2 )))dx  adopt faynmann trick  I_1 =∫_0 ^1 ((ln(1+x))/x)dx−∫_0 ^1 (1/(1+x^2 ))(∫_0 ^1 (1/(1+xy))dy)dx  I_1 =η(2)−∫_0 ^1 (1/(1+y^2 ))∫_0 ^1 [(y^2 /(1+xy))+((1−xy)/(1+x^2 ))]dxdy  I_1 =(π^2 /(12))−∫_0 ^1 (1/(1+y^2 ))[yln(1+y)+(π/4)−(y/2)ln2]dy  I_1 =(π^2 /(12))−∫_0 ^1 ((yln(1+y))/(1+y^2 ))−(π/4)∫_0 ^1 (1/(1+y^2 ))dy+(1/2)ln2∫_0 ^1 (y/(1+y^2 ))dy  I_1 =(π^2 /(12))−I_1 −(π^2 /(16))+((ln^2 (2))/4)  2I_1 =(π^2 /(48))+((ln^2 (2))/4)  ∵I_1 =(π^2 /(96))+((ln^2 (2))/8)  recall that   I=ln^2 (2)−2I_1 .........(1)  ∵I=ln^2 (2)−2[(π^2 /(96))+((ln^2 (2))/8)]  I=ln^2 (2)−((.π^2 )/(48))−((ln^2 (2))/4)  I=(3/4)ln^2 (2)−(π^2 /(48))  ∵∫_0 ^1 ((ln(1+x^2 ))/(1+x))dx=(3/4)ln^2 (2)−(π^2 /(48))  by mathdave(08/09/2020)

solutiontoletI=01ln(1+x2)1+xdxusingIBPI=∣ln(1+x)ln(1+x2)01201xln(1+x)1+x2dxI=ln2(2)2I1........(1)LetI1=01xln(1+x)1+x2dx=01[(1+x21)1+x2]ln(1+x)xdxI1=01ln(1+x)xdx01ln(1+x)x(1+x2)dxadoptfaynmanntrickI1=01ln(1+x)xdx0111+x2(0111+xydy)dxI1=η(2)0111+y201[y21+xy+1xy1+x2]dxdyI1=π2120111+y2[yln(1+y)+π4y2ln2]dyI1=π21201yln(1+y)1+y2π40111+y2dy+12ln201y1+y2dyI1=π212I1π216+ln2(2)42I1=π248+ln2(2)4I1=π296+ln2(2)8recallthatI=ln2(2)2I1.........(1)I=ln2(2)2[π296+ln2(2)8]I=ln2(2).π248ln2(2)4I=34ln2(2)π24801ln(1+x2)1+xdx=34ln2(2)π248bymathdave(08/09/2020)

Commented by mathmax by abdo last updated on 08/Sep/20

thanks

thanks

Commented by Tawa11 last updated on 06/Sep/21

great sir

greatsir

Answered by mnjuly1970 last updated on 08/Sep/20

Commented by mathmax by abdo last updated on 08/Sep/20

thanks

thanks

Commented by mnjuly1970 last updated on 08/Sep/20

grateful sir .to me   you are ′ostad′( in our  language means  ′master  and scholar′ in his field)  in mathematics . thank  you so much sir for your  effort ....

gratefulsir.tomeyouareostad(inourlanguagemeansmasterandscholarinhisfield)inmathematics.thankyousomuchsirforyoureffort....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com