Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 112492 by mathdave last updated on 08/Sep/20

evaluate  lim_(n→∞) Σ_(k=1) ^n (1/(n+k^2 ))

$${evaluate} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{n}+{k}^{\mathrm{2}} } \\ $$

Answered by Ar Brandon last updated on 08/Sep/20

1≤k≤n⇒1≤k^2 ≤n^2 ⇒n+1≤n+k^2 ≤n+n^2   ⇒(1/(n+n^2 ))≤(1/(n+k^2 ))≤(1/(n+1))⇒lim_(n→∞) Σ_(k=1) ^n (1/(n+n^2 ))≤lim_(n→∞) A_n ≤lim_(n→∞) Σ_(k=1) ^n (1/(n+1))  ⇒lim_(n→∞) (n/(n+n^2 ))≤lim_(n→∞) A_n ≤lim_(n→∞) (n/(n+1))⇒0≤lim_(n→∞) ≤1  ...

$$\mathrm{1}\leqslant\mathrm{k}\leqslant\mathrm{n}\Rightarrow\mathrm{1}\leqslant\mathrm{k}^{\mathrm{2}} \leqslant\mathrm{n}^{\mathrm{2}} \Rightarrow\mathrm{n}+\mathrm{1}\leqslant\mathrm{n}+\mathrm{k}^{\mathrm{2}} \leqslant\mathrm{n}+\mathrm{n}^{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{n}+\mathrm{n}^{\mathrm{2}} }\leqslant\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}^{\mathrm{2}} }\leqslant\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\Rightarrow\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{n}+\mathrm{n}^{\mathrm{2}} }\leqslant\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}A}_{\mathrm{n}} \leqslant\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}} \\ $$$$\Rightarrow\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{n}}{\mathrm{n}+\mathrm{n}^{\mathrm{2}} }\leqslant\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}A}_{\mathrm{n}} \leqslant\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{n}}{\mathrm{n}+\mathrm{1}}\Rightarrow\mathrm{0}\leqslant\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\leqslant\mathrm{1} \\ $$$$... \\ $$

Commented by mathdave last updated on 08/Sep/20

nice attempt

$${nice}\:{attempt} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com