Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 112606 by ajfour last updated on 08/Sep/20

Commented by ajfour last updated on 10/Sep/20

Find minimum length of AE in  terms of r, a, b.

FindminimumlengthofAEintermsofr,a,b.

Answered by mr W last updated on 09/Sep/20

Commented by mr W last updated on 09/Sep/20

μ=(b/a)  ρ=(r/a)  η=(h/a)  λ=tan ϕ  eqn. of QA:  y=−k+(x+h)tan ϕ  λx−y+(λh−k)=0  λ^2 a^2 +b^2 =(λh−k)^2   ⇒k=λh−(√(λ^2 a^2 +b^2 ))  ⇒(k/a)=λη−(√(λ^2 +μ^2 ))  P(−a cos θ, −b sin θ)  tan φ=(μ/(tan θ))  ϕ+α+((π/2)−ϕ−φ)=(π/2)  ⇒α⇒φ  −a cos θ=−h+r sin φ  ⇒ρ sin φ=η−cos θ  −b sin θ=−k+r cos φ  ⇒ρ cos φ=λη−(√(λ^2 +μ^2 ))−μ sin θ  ⇒tan φ=((η−cos θ)/(λη−(√(λ^2 +μ^2 ))−μ sin θ))  ⇒(μ/(tan θ))=((η−cos θ)/(λη−(√(λ^2 +μ^2 ))−μ sin θ))  (μλ−tan θ)η=μ(√(λ^2 +μ^2 ))−(1−μ^2 )sin θ  ⇒η=((μ(√(λ^2 +μ^2 ))−(1−μ^2 )sin θ)/(μλ−tan θ))  ⇒ρ^2 =(η−cos θ)^2 +(λη−(√(λ^2 +μ^2 ))−μ sin θ)^2     x_A =−h+r cos ϕ  y_A =−k+r sin ϕ  AE^2 =(h−r cos ϕ)^2 +(k−r sin ϕ)^2   Φ=(((AE)/a))^2 =(η−ρ cos ϕ)^2 +(λη−(√(λ^2 +μ^2 ))−ρ sin ϕ)^2   Φ=[((μ(√(λ^2 +μ^2 ))−(1−μ^2 )sin θ)/(μλ−tan θ))−ρ cos ϕ]^2 +[((μλ(√(λ^2 +μ^2 ))−λ(1−μ^2 )sin θ)/(μλ−tan θ))−(√(λ^2 +μ^2 ))−ρ sin ϕ]^2   .....

μ=baρ=raη=haλ=tanφeqn.ofQA:y=k+(x+h)tanφλxy+(λhk)=0λ2a2+b2=(λhk)2k=λhλ2a2+b2ka=ληλ2+μ2P(acosθ,bsinθ)tanϕ=μtanθφ+α+(π2φϕ)=π2αϕacosθ=h+rsinϕρsinϕ=ηcosθbsinθ=k+rcosϕρcosϕ=ληλ2+μ2μsinθtanϕ=ηcosθληλ2+μ2μsinθμtanθ=ηcosθληλ2+μ2μsinθ(μλtanθ)η=μλ2+μ2(1μ2)sinθη=μλ2+μ2(1μ2)sinθμλtanθρ2=(ηcosθ)2+(ληλ2+μ2μsinθ)2xA=h+rcosφyA=k+rsinφAE2=(hrcosφ)2+(krsinφ)2Φ=(AEa)2=(ηρcosφ)2+(ληλ2+μ2ρsinφ)2Φ=[μλ2+μ2(1μ2)sinθμλtanθρcosφ]2+[μλλ2+μ2λ(1μ2)sinθμλtanθλ2+μ2ρsinφ]2.....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com