All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 112642 by mathdave last updated on 09/Sep/20
questionproposedbyA8;15:∫01ln(ln1x)1+xdx
Answered by mathdave last updated on 09/Sep/20
mysolutiongoesfirstweneedtoconvertfrommalsten′sintegraltoverdi′sintegralletI=∫01ln(ln1x)1+xdxlett=ln(1x)x=e−tanddx=−e−tI=∫∞0lnt1+e−t×−e−tdt=∫0∞lnt1+e−te−tdtI=∫0∞lnt1+etdtI=∂∂a∣a=0∫0∞ta1+etdtbutnote∫0∞ts1+etdt=η(s+1)Γ(s+1)I=∂∂a∣a=0[η(a+1)Γ(a+1)]I=[η′(a+1)Γ(a+1)+η(a+1)Γ′(a+1)]a=0butΓ(a+1)=Γ(a+1)ψ(a+1)I=[η′(a+1)Γ(a+1)+η(a+1)Γ(a+1)ψ(a+1)]a=0I=[η′(1)Γ(1)+η(1)Γ(1)ψ(1)]butη′(1)=−γln2−12ln2(2),Γ(1)=1,η(1)=ln2,ψ(1)=γI=−γln2−12ln2(2)+γln2=−12ln2(2)∵∫01ln(ln1x)1+xdx=−12ln2(2)bymathdave(09/08/2020)
Commented by mnjuly1970 last updated on 09/Sep/20
verynicemrbathdave...
Commented by Tawa11 last updated on 06/Sep/21
greatsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com