Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 112697 by mnjuly1970 last updated on 09/Sep/20

     ....calculus...  please  prove :        Ω=∫_0 ^( ∞)  (1/((1+x^ϕ )^ϕ ))dx =1   ϕ::  golden  ratio ...

$$\:\:\:\:\:....{calculus}... \\ $$$${please}\:\:{prove}\:: \\ $$$$ \\ $$$$\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\varphi} \right)^{\varphi} }{dx}\:=\mathrm{1} \\ $$$$\:\varphi::\:\:{golden}\:\:{ratio}\:... \\ $$

Commented by mathdave last updated on 09/Sep/20

this is simple nah

$${this}\:{is}\:{simple}\:{nah} \\ $$

Commented by MJS_new last updated on 09/Sep/20

I haven′t found it yet but we have to play  around with the fact  (1/ϕ)=ϕ−1 and ϕ^2 =ϕ+1

$$\mathrm{I}\:\mathrm{haven}'\mathrm{t}\:\mathrm{found}\:\mathrm{it}\:\mathrm{yet}\:\mathrm{but}\:\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{play} \\ $$$$\mathrm{around}\:\mathrm{with}\:\mathrm{the}\:\mathrm{fact} \\ $$$$\frac{\mathrm{1}}{\varphi}=\varphi−\mathrm{1}\:\mathrm{and}\:\varphi^{\mathrm{2}} =\varphi+\mathrm{1} \\ $$

Commented by mnjuly1970 last updated on 09/Sep/20

you are right..

$${you}\:{are}\:{right}.. \\ $$

Answered by MJS_new last updated on 09/Sep/20

trying “reverse method”  (d/dx)[f(x)(1+x^ϕ )^(1−ϕ) ]=  =f′(x)(1+x^ϕ )^(1−ϕ) +(ϕ−ϕ^2 )f(x)(x^(ϕ−1) /((1+x^ϕ )^ϕ ))=  =((f′(x)(1+x^ϕ )+(ϕ−ϕ^2 )f(x)x^(ϕ−1) )/((1+x^ϕ )^(ϕ ) ))  putting f(x)=x we get  (((1+ϕ−ϕ^2 )x^ϕ +1)/((1+x^ϕ )^ϕ ))  but 1+ϕ−ϕ^2 =0  ⇒  ∫(dx/((1+x^ϕ )^ϕ ))=(x/((1+x^ϕ )^(ϕ−1) ))+C=(x/((1+x^ϕ )^(1/ϕ) ))+C  ∫_0 ^∞ (dx/((1+x^ϕ )^ϕ ))=lim_(x→∞)  (x/((1+x^ϕ )^(1/ϕ) )) =1

$$\mathrm{trying}\:``\mathrm{reverse}\:\mathrm{method}'' \\ $$$$\frac{{d}}{{dx}}\left[{f}\left({x}\right)\left(\mathrm{1}+{x}^{\varphi} \right)^{\mathrm{1}−\varphi} \right]= \\ $$$$={f}'\left({x}\right)\left(\mathrm{1}+{x}^{\varphi} \right)^{\mathrm{1}−\varphi} +\left(\varphi−\varphi^{\mathrm{2}} \right){f}\left({x}\right)\frac{{x}^{\varphi−\mathrm{1}} }{\left(\mathrm{1}+{x}^{\varphi} \right)^{\varphi} }= \\ $$$$=\frac{{f}'\left({x}\right)\left(\mathrm{1}+{x}^{\varphi} \right)+\left(\varphi−\varphi^{\mathrm{2}} \right){f}\left({x}\right){x}^{\varphi−\mathrm{1}} }{\left(\mathrm{1}+{x}^{\varphi} \right)^{\varphi\:} } \\ $$$$\mathrm{putting}\:{f}\left({x}\right)={x}\:\mathrm{we}\:\mathrm{get} \\ $$$$\frac{\left(\mathrm{1}+\varphi−\varphi^{\mathrm{2}} \right){x}^{\varphi} +\mathrm{1}}{\left(\mathrm{1}+{x}^{\varphi} \right)^{\varphi} } \\ $$$$\mathrm{but}\:\mathrm{1}+\varphi−\varphi^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\int\frac{{dx}}{\left(\mathrm{1}+{x}^{\varphi} \right)^{\varphi} }=\frac{{x}}{\left(\mathrm{1}+{x}^{\varphi} \right)^{\varphi−\mathrm{1}} }+{C}=\frac{{x}}{\left(\mathrm{1}+{x}^{\varphi} \right)^{\mathrm{1}/\varphi} }+{C} \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{dx}}{\left(\mathrm{1}+{x}^{\varphi} \right)^{\varphi} }=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{{x}}{\left(\mathrm{1}+{x}^{\varphi} \right)^{\mathrm{1}/\varphi} }\:=\mathrm{1} \\ $$

Commented by mnjuly1970 last updated on 09/Sep/20

nice method..

$${nice}\:{method}.. \\ $$

Commented by MJS_new last updated on 09/Sep/20

it works only sometimes...

$$\mathrm{it}\:\mathrm{works}\:\mathrm{only}\:\mathrm{sometimes}... \\ $$

Answered by ajfour last updated on 09/Sep/20

I=∫(dx/([1+x(x^(1/ϕ) )]^ϕ ))    =∫(dx/(x(x^(−1/ϕ) +x)^ϕ ))   let x=e^t    ⇒  (dx/x)=dt   I=∫_(−∞) ^(  ∞) (dt/((e^(−t((1/ϕ))) +e^t )^ϕ ))    but  (1/ϕ)=ϕ−1   ,  so  I=∫(dt/(((e^t /e^(ϕt) )+e^t )^ϕ )) = ∫_(−∞) ^(  ∞) ((e^(−ϕt) dt)/((e^(−ϕt) +1)^ϕ ))  let  e^(−ϕt) +1=z  ⇒    e^(−ϕt) dt = −(dz/ϕ)  I=−(1/ϕ)∫_∞ ^( 1) z^(−ϕ) dz   I=(1/(ϕ(ϕ−1)))[z^(−ϕ+1) ]_∞ ^1   I = (((ϕ−1)/(ϕ−1)))(1−0) = 1    ★.................................★

$${I}=\int\frac{{dx}}{\left[\mathrm{1}+{x}\left({x}^{\mathrm{1}/\varphi} \right)\right]^{\varphi} } \\ $$$$\:\:=\int\frac{{dx}}{{x}\left({x}^{−\mathrm{1}/\varphi} +{x}\right)^{\varphi} } \\ $$$$\:{let}\:{x}={e}^{{t}} \:\:\:\Rightarrow\:\:\frac{{dx}}{{x}}={dt} \\ $$$$\:{I}=\int_{−\infty} ^{\:\:\infty} \frac{{dt}}{\left({e}^{−{t}\left(\frac{\mathrm{1}}{\varphi}\right)} +{e}^{{t}} \right)^{\varphi} } \\ $$$$\:\:{but}\:\:\frac{\mathrm{1}}{\varphi}=\varphi−\mathrm{1}\:\:\:,\:\:{so} \\ $$$${I}=\int\frac{{dt}}{\left(\frac{{e}^{{t}} }{{e}^{\varphi{t}} }+{e}^{{t}} \right)^{\varphi} }\:=\:\int_{−\infty} ^{\:\:\infty} \frac{{e}^{−\varphi{t}} {dt}}{\left({e}^{−\varphi{t}} +\mathrm{1}\right)^{\varphi} } \\ $$$${let}\:\:{e}^{−\varphi{t}} +\mathrm{1}={z} \\ $$$$\Rightarrow\:\:\:\:{e}^{−\varphi{t}} {dt}\:=\:−\frac{{dz}}{\varphi} \\ $$$${I}=−\frac{\mathrm{1}}{\varphi}\int_{\infty} ^{\:\mathrm{1}} {z}^{−\varphi} {dz}\: \\ $$$${I}=\frac{\mathrm{1}}{\varphi\left(\varphi−\mathrm{1}\right)}\left[{z}^{−\varphi+\mathrm{1}} \right]_{\infty} ^{\mathrm{1}} \\ $$$${I}\:=\:\left(\frac{\varphi−\mathrm{1}}{\varphi−\mathrm{1}}\right)\left(\mathrm{1}−\mathrm{0}\right)\:=\:\mathrm{1}\:\: \\ $$$$\bigstar.................................\bigstar \\ $$$$\:\: \\ $$

Commented by mnjuly1970 last updated on 09/Sep/20

nice very nice  mr ajfour .  thank you very much.

$${nice}\:{very}\:{nice}\:\:{mr}\:{ajfour}\:. \\ $$$${thank}\:{you}\:{very}\:{much}. \\ $$

Answered by mnjuly1970 last updated on 09/Sep/20

solution.  we know that::   ∫_0 ^( ∞)  (x^(p−1) /((1+x)^(p+q) ))dx =  ((Γ(p)Γ(q))/(Γ(p+q)))    x^ϕ  =t ⇒dx =(1/ϕ)t^((1/ϕ) −1)     Ω =(1/ϕ) ∫_0 ^( ∞) (t^((1/ϕ) −1) /((1+t)^ϕ )) dt = (1/ϕ)[((Γ((1/ϕ))Γ(ϕ−(1/ϕ)))/(Γ(ϕ )))]      we know that :  ϕ^2 =ϕ+1⇒ϕ=1+(1/ϕ)  ∴ Ω =(1/ϕ)(((Γ((1/ϕ)))/(Γ(ϕ))))=((Γ(1+(1/ϕ)))/(Γ(ϕ))) =((Γ(ϕ))/(Γ(ϕ)))    =1 ✓         ...m.n...

$${solution}. \\ $$$${we}\:{know}\:{that}:: \\ $$$$\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{{x}^{{p}−\mathrm{1}} }{\left(\mathrm{1}+{x}\right)^{{p}+{q}} }{dx}\:=\:\:\frac{\Gamma\left({p}\right)\Gamma\left({q}\right)}{\Gamma\left({p}+{q}\right)} \\ $$$$\:\:{x}^{\varphi} \:={t}\:\Rightarrow{dx}\:=\frac{\mathrm{1}}{\varphi}{t}^{\frac{\mathrm{1}}{\varphi}\:−\mathrm{1}} \\ $$$$\:\:\Omega\:=\frac{\mathrm{1}}{\varphi}\:\int_{\mathrm{0}} ^{\:\infty} \frac{{t}^{\frac{\mathrm{1}}{\varphi}\:−\mathrm{1}} }{\left(\mathrm{1}+{t}\right)^{\varphi} }\:{dt}\:=\:\frac{\mathrm{1}}{\varphi}\left[\frac{\Gamma\left(\frac{\mathrm{1}}{\varphi}\right)\Gamma\left(\varphi−\frac{\mathrm{1}}{\varphi}\right)}{\Gamma\left(\varphi\:\right)}\right] \\ $$$$\:\:\:\:{we}\:{know}\:{that}\::\:\:\varphi^{\mathrm{2}} =\varphi+\mathrm{1}\Rightarrow\varphi=\mathrm{1}+\frac{\mathrm{1}}{\varphi} \\ $$$$\therefore\:\Omega\:=\frac{\mathrm{1}}{\varphi}\left(\frac{\Gamma\left(\frac{\mathrm{1}}{\varphi}\right)}{\Gamma\left(\varphi\right)}\right)=\frac{\Gamma\left(\mathrm{1}+\frac{\mathrm{1}}{\varphi}\right)}{\Gamma\left(\varphi\right)}\:=\frac{\Gamma\left(\varphi\right)}{\Gamma\left(\varphi\right)}\: \\ $$$$\:=\mathrm{1}\:\checkmark \\ $$$$\:\:\:\:\:\:\:...{m}.{n}... \\ $$$$\: \\ $$

Commented by Tawa11 last updated on 06/Sep/21

great sir

$$\mathrm{great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com