Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 112714 by deepak@7237 last updated on 09/Sep/20

Q.  y = sin^(−1) (((a + bcosx)/(b + acosx))) ,  then find (dy/dx)

Q.y=sin1(a+bcosxb+acosx),thenfinddydx

Answered by deepak@7237 last updated on 09/Sep/20

Commented by deepak@7237 last updated on 09/Sep/20

Answered by 1549442205PVT last updated on 09/Sep/20

.  y = sin^(−1) (((a + bcosx)/(b + acosx)))  ⇔siny=((a+bcosx)/(b+acosx)).Derivative two sides  by x we get:  y′cosy=((−bsinx(b+acosx)−(a+bcosx)(−asinx))/((b+acosx)^2 ))  ⇔y′cosy=(((a^2 −b^2 )sinx)/((b+acosx)^2 ))  ⇒y′=(((a^2 −b^2 )sinx)/((b+acosx)^2  cosy))  =(((a^2 −b^2 )sinx)/((b+acosx)^2 ))×(1/( (√(1−sin^2 y))))  (dy/dx)=(((a^2 −b^2 )sinx)/((b+acosx)^2 ))×(1/( (√(1−(((a+bcosx)/(b+acosx)))^2 ))))    =(((a^2 −b^2 )sinx)/((b+acosx)^2 ))×∣((b+acosx)/( (√((b^2 −a^2 )sin^2 x))))∣

.y=sin1(a+bcosxb+acosx)siny=a+bcosxb+acosx.Derivativetwosidesbyxweget:ycosy=bsinx(b+acosx)(a+bcosx)(asinx)(b+acosx)2ycosy=(a2b2)sinx(b+acosx)2y=(a2b2)sinx(b+acosx)2cosy=(a2b2)sinx(b+acosx)2×11sin2ydydx=(a2b2)sinx(b+acosx)2×11(a+bcosxb+acosx)2=(a2b2)sinx(b+acosx)2×b+acosx(b2a2)sin2x

Terms of Service

Privacy Policy

Contact: info@tinkutara.com