All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 11272 by chux last updated on 18/Mar/17
Answered by mrW1 last updated on 18/Mar/17
(1)⇒y+z=1−x(2)⇒y2+z2=35−x2(y+z)2=(1−x)2y2+z2+2yz=1+x2−2x35−x2+2yz=1+x2−2xyz=x2−x−17(3)⇒y3+z3=97−x3(y+z)(y2+z2−yz)=97−x3(1−x)(35−x2−x2+x+17)=97−x3(1−x)(52−2x2+x)=97−x352−2x2+x−52x+2x3−x2−97+x3=0−3x2−51x+3x3−45=0x3−x2−17x−15=0(x+1)(x+3)(x−5)=0⇒x=−3,−1,5similarly⇒y=−3,−1,5⇒z=−3,−1,5allpossiblesolutionsaretherefore(xyz)=(−3−15)(xyz)=(−35−1)(xyz)=(−1−35)(xyz)=(−15−3)(xyz)=(5−3−1)(xyz)=(5−1−3)
Commented by chux last updated on 19/Mar/17
ireallyappreciate....thanxalot.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com