Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 112746 by bemath last updated on 09/Sep/20

If z = −i is the root of the equation  z^3 +k.z^2 +(8+2(√2) i)z+8i =0  find the other roots

$$\mathrm{If}\:\mathrm{z}\:=\:−\mathrm{i}\:\mathrm{is}\:\mathrm{the}\:\mathrm{root}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{z}^{\mathrm{3}} +\mathrm{k}.\mathrm{z}^{\mathrm{2}} +\left(\mathrm{8}+\mathrm{2}\sqrt{\mathrm{2}}\:\mathrm{i}\right)\mathrm{z}+\mathrm{8i}\:=\mathrm{0} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{other}\:\mathrm{roots} \\ $$

Commented by malwan last updated on 09/Sep/20

the equation should be  z^3  + kz^2  + (8 + 2(√2) i )z + 8i = 0   you posted it again as image

$${the}\:{equation}\:{should}\:{be} \\ $$$${z}^{\mathrm{3}} \:+\:{kz}^{\mathrm{2}} \:+\:\left(\mathrm{8}\:+\:\mathrm{2}\sqrt{\mathrm{2}}\:{i}\:\right){z}\:+\:\mathrm{8}{i}\:=\:\mathrm{0} \\ $$$$\:{you}\:{posted}\:{it}\:{again}\:{as}\:{image}\: \\ $$

Commented by bemath last updated on 09/Sep/20

oo yes

$$\mathrm{oo}\:\mathrm{yes} \\ $$

Answered by bobhans last updated on 09/Sep/20

z=−i ⇒ (−i)^3 +k(−i)^2 +(8+2(√2) i)(−i)+8i=0  ⇒i −k −8i+2(√2) +8i = 0  ⇒ k = 2(√2) +i  By Horner′s rule    z^3 +(2(√2) +i)z^2 +(8+2(√2) i)z +8i= 0  (z+i)(z^2 +2(√2) z+8) = 0  z_1 =−i, z_(2,3)  = ((−2(√2) ±(√(8−32)))/2)  z_2  = ((−2(√2)+2(√6) i)/2) = −(√2) +(√6) i  ∣z_2 ∣ = (√8) = 2(√2) →z_2  = 2(√2)(−(1/2)+((√3)/2) i)  z_2  = 2(√2) e^(((2π)/3)i)   z_3 =((−2(√2)−2(√6) i)/2) = −(√2)−(√6) i  z_3 = 2(√2) e^(−((2π)/3)i )

$$\mathrm{z}=−\mathrm{i}\:\Rightarrow\:\left(−\mathrm{i}\right)^{\mathrm{3}} +\mathrm{k}\left(−\mathrm{i}\right)^{\mathrm{2}} +\left(\mathrm{8}+\mathrm{2}\sqrt{\mathrm{2}}\:\mathrm{i}\right)\left(−\mathrm{i}\right)+\mathrm{8i}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{i}\:−\mathrm{k}\:−\mathrm{8i}+\mathrm{2}\sqrt{\mathrm{2}}\:+\mathrm{8i}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{k}\:=\:\mathrm{2}\sqrt{\mathrm{2}}\:+\mathrm{i} \\ $$$$\mathrm{By}\:\mathrm{Horner}'\mathrm{s}\:\mathrm{rule}\: \\ $$$$\:\mathrm{z}^{\mathrm{3}} +\left(\mathrm{2}\sqrt{\mathrm{2}}\:+\mathrm{i}\right)\mathrm{z}^{\mathrm{2}} +\left(\mathrm{8}+\mathrm{2}\sqrt{\mathrm{2}}\:\mathrm{i}\right)\mathrm{z}\:+\mathrm{8i}=\:\mathrm{0} \\ $$$$\left(\mathrm{z}+\mathrm{i}\right)\left(\mathrm{z}^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{2}}\:\mathrm{z}+\mathrm{8}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{z}_{\mathrm{1}} =−\mathrm{i},\:\mathrm{z}_{\mathrm{2},\mathrm{3}} \:=\:\frac{−\mathrm{2}\sqrt{\mathrm{2}}\:\pm\sqrt{\mathrm{8}−\mathrm{32}}}{\mathrm{2}} \\ $$$$\mathrm{z}_{\mathrm{2}} \:=\:\frac{−\mathrm{2}\sqrt{\mathrm{2}}+\mathrm{2}\sqrt{\mathrm{6}}\:\mathrm{i}}{\mathrm{2}}\:=\:−\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{6}}\:\mathrm{i} \\ $$$$\mid\mathrm{z}_{\mathrm{2}} \mid\:=\:\sqrt{\mathrm{8}}\:=\:\mathrm{2}\sqrt{\mathrm{2}}\:\rightarrow\mathrm{z}_{\mathrm{2}} \:=\:\mathrm{2}\sqrt{\mathrm{2}}\left(−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\mathrm{i}\right) \\ $$$$\mathrm{z}_{\mathrm{2}} \:=\:\mathrm{2}\sqrt{\mathrm{2}}\:\mathrm{e}^{\frac{\mathrm{2}\pi}{\mathrm{3}}\mathrm{i}} \\ $$$$\mathrm{z}_{\mathrm{3}} =\frac{−\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{2}\sqrt{\mathrm{6}}\:\mathrm{i}}{\mathrm{2}}\:=\:−\sqrt{\mathrm{2}}−\sqrt{\mathrm{6}}\:\mathrm{i} \\ $$$$\mathrm{z}_{\mathrm{3}} =\:\mathrm{2}\sqrt{\mathrm{2}}\:\mathrm{e}^{−\frac{\mathrm{2}\pi}{\mathrm{3}}\mathrm{i}\:} \\ $$

Commented by malwan last updated on 09/Sep/20

z_3 =−(√2)−(√6)i=[2(√(2 )); ((4π)/3)]=2(√2)e^(((4π)/3)i)   or z_3 =−((√2)+(√6)i)=−[2(√2);(π/3)]  =[2(√2); (π/3) + π]=[2(√2) ; ((4π)/3)]=2(√2)e^(((4π)/3)i)

$${z}_{\mathrm{3}} =−\sqrt{\mathrm{2}}−\sqrt{\mathrm{6}}{i}=\left[\mathrm{2}\sqrt{\mathrm{2}\:};\:\frac{\mathrm{4}\pi}{\mathrm{3}}\right]=\mathrm{2}\sqrt{\mathrm{2}}{e}^{\frac{\mathrm{4}\pi}{\mathrm{3}}{i}} \\ $$$${or}\:{z}_{\mathrm{3}} =−\left(\sqrt{\mathrm{2}}+\sqrt{\mathrm{6}}{i}\right)=−\left[\mathrm{2}\sqrt{\mathrm{2}};\frac{\pi}{\mathrm{3}}\right] \\ $$$$=\left[\mathrm{2}\sqrt{\mathrm{2}};\:\frac{\pi}{\mathrm{3}}\:+\:\pi\right]=\left[\mathrm{2}\sqrt{\mathrm{2}}\:;\:\frac{\mathrm{4}\pi}{\mathrm{3}}\right]=\mathrm{2}\sqrt{\mathrm{2}}{e}^{\frac{\mathrm{4}\pi}{\mathrm{3}}{i}} \\ $$

Answered by floor(10²Eta[1]) last updated on 09/Sep/20

if −i is a root:  (−i)^3 +k(−i)^2 +(8+2(√2))(−i)+8i=0  =i−k−8i+8i−2(√2)i⇒k=(1−2(√2))i  f(z)=z^3 +(1−2(√2))iz^2 +(8+2(√2))z+8i  =(z+i)(z^2 +az+8)=z^3 +(a+i)z^2 +(8+ai)z+8i   { ((a+i=(1−2(√2))i)),((8+ai=8+2(√2))) :}  ⇒a=−2(√2)i  f(z)=(z+i)(z^2 −2(√2)iz+8)=0  z^2 −2(√2)iz+8=0  z=i(√2)±i(√(10))  the roots are:  −i, i(√2)+i(√(10)), i(√2)−i(√(10))

$$\mathrm{if}\:−\mathrm{i}\:\mathrm{is}\:\mathrm{a}\:\mathrm{root}: \\ $$$$\left(−\mathrm{i}\right)^{\mathrm{3}} +\mathrm{k}\left(−\mathrm{i}\right)^{\mathrm{2}} +\left(\mathrm{8}+\mathrm{2}\sqrt{\mathrm{2}}\right)\left(−\mathrm{i}\right)+\mathrm{8i}=\mathrm{0} \\ $$$$=\mathrm{i}−\mathrm{k}−\mathrm{8i}+\mathrm{8i}−\mathrm{2}\sqrt{\mathrm{2}}\mathrm{i}\Rightarrow\mathrm{k}=\left(\mathrm{1}−\mathrm{2}\sqrt{\mathrm{2}}\right)\mathrm{i} \\ $$$$\mathrm{f}\left(\mathrm{z}\right)=\mathrm{z}^{\mathrm{3}} +\left(\mathrm{1}−\mathrm{2}\sqrt{\mathrm{2}}\right)\mathrm{iz}^{\mathrm{2}} +\left(\mathrm{8}+\mathrm{2}\sqrt{\mathrm{2}}\right)\mathrm{z}+\mathrm{8i} \\ $$$$=\left(\mathrm{z}+\mathrm{i}\right)\left(\mathrm{z}^{\mathrm{2}} +\mathrm{az}+\mathrm{8}\right)=\mathrm{z}^{\mathrm{3}} +\left(\mathrm{a}+\mathrm{i}\right)\mathrm{z}^{\mathrm{2}} +\left(\mathrm{8}+\mathrm{ai}\right)\mathrm{z}+\mathrm{8i} \\ $$$$\begin{cases}{\mathrm{a}+\mathrm{i}=\left(\mathrm{1}−\mathrm{2}\sqrt{\mathrm{2}}\right)\mathrm{i}}\\{\mathrm{8}+\mathrm{ai}=\mathrm{8}+\mathrm{2}\sqrt{\mathrm{2}}}\end{cases} \\ $$$$\Rightarrow\mathrm{a}=−\mathrm{2}\sqrt{\mathrm{2}}\mathrm{i} \\ $$$$\mathrm{f}\left(\mathrm{z}\right)=\left(\mathrm{z}+\mathrm{i}\right)\left(\mathrm{z}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{2}}\mathrm{iz}+\mathrm{8}\right)=\mathrm{0} \\ $$$$\mathrm{z}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{2}}\mathrm{iz}+\mathrm{8}=\mathrm{0} \\ $$$$\mathrm{z}=\mathrm{i}\sqrt{\mathrm{2}}\pm\mathrm{i}\sqrt{\mathrm{10}} \\ $$$$\mathrm{the}\:\mathrm{roots}\:\mathrm{are}: \\ $$$$−\mathrm{i},\:\mathrm{i}\sqrt{\mathrm{2}}+\mathrm{i}\sqrt{\mathrm{10}},\:\mathrm{i}\sqrt{\mathrm{2}}−\mathrm{i}\sqrt{\mathrm{10}} \\ $$

Commented by bemath last updated on 09/Sep/20

Commented by bemath last updated on 09/Sep/20

sir how to change your answer to choice  answer?

$$\mathrm{sir}\:\mathrm{how}\:\mathrm{to}\:\mathrm{change}\:\mathrm{your}\:\mathrm{answer}\:\mathrm{to}\:\mathrm{choice} \\ $$$$\mathrm{answer}? \\ $$

Commented by floor(10²Eta[1]) last updated on 09/Sep/20

all answers are wrong the correct one  should be:  ((√2)+(√(10)))e^((iπ)/2)  and ((√2)−(√(10)))e^((iπ)/2)

$$\mathrm{all}\:\mathrm{answers}\:\mathrm{are}\:\mathrm{wrong}\:\mathrm{the}\:\mathrm{correct}\:\mathrm{one} \\ $$$$\mathrm{should}\:\mathrm{be}: \\ $$$$\left(\sqrt{\mathrm{2}}+\sqrt{\mathrm{10}}\right)\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{2}}} \:\mathrm{and}\:\left(\sqrt{\mathrm{2}}−\sqrt{\mathrm{10}}\right)\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{2}}} \\ $$

Answered by malwan last updated on 09/Sep/20

z=−i⇒ k = 2(√2)+ i  using Hornors rule we get  z^2 +2(√2)z+8=0  z=((−2(√2)±(√(8−32)))/2) =((−2(√2)±2(√6)i)/2)  =2(√2)(− (1/2) ± ((√3)/2) i)  z_1  = −i  z_2  = [2(√2) ; 0][1 ; ((2π)/3)]=[2(√2) ; ((2π)/3)]=2(√2)e^(i((2π)/3))   z_3  =[2(√2) ; 0][1;((4π)/3)]=[2(√2);((4π)/3)]=2(√2)e^(i((4π)/3))

$${z}=−{i}\Rightarrow\:{k}\:=\:\mathrm{2}\sqrt{\mathrm{2}}+\:{i} \\ $$$${using}\:{Hornors}\:{rule}\:{we}\:{get} \\ $$$${z}^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{2}}{z}+\mathrm{8}=\mathrm{0} \\ $$$${z}=\frac{−\mathrm{2}\sqrt{\mathrm{2}}\pm\sqrt{\mathrm{8}−\mathrm{32}}}{\mathrm{2}}\:=\frac{−\mathrm{2}\sqrt{\mathrm{2}}\pm\mathrm{2}\sqrt{\mathrm{6}}{i}}{\mathrm{2}} \\ $$$$=\mathrm{2}\sqrt{\mathrm{2}}\left(−\:\frac{\mathrm{1}}{\mathrm{2}}\:\pm\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:{i}\right) \\ $$$${z}_{\mathrm{1}} \:=\:−{i} \\ $$$${z}_{\mathrm{2}} \:=\:\left[\mathrm{2}\sqrt{\mathrm{2}}\:;\:\mathrm{0}\right]\left[\mathrm{1}\:;\:\frac{\mathrm{2}\pi}{\mathrm{3}}\right]=\left[\mathrm{2}\sqrt{\mathrm{2}}\:;\:\frac{\mathrm{2}\pi}{\mathrm{3}}\right]=\mathrm{2}\sqrt{\mathrm{2}}{e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \\ $$$${z}_{\mathrm{3}} \:=\left[\mathrm{2}\sqrt{\mathrm{2}}\:;\:\mathrm{0}\right]\left[\mathrm{1};\frac{\mathrm{4}\pi}{\mathrm{3}}\right]=\left[\mathrm{2}\sqrt{\mathrm{2}};\frac{\mathrm{4}\pi}{\mathrm{3}}\right]=\mathrm{2}\sqrt{\mathrm{2}}{e}^{{i}\frac{\mathrm{4}\pi}{\mathrm{3}}} \\ $$

Commented by bemath last updated on 09/Sep/20

thank you sir. but z_3 =z_2 ^−   z_3 =2(√2) e^(−((2π)/3)i )

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{but}\:\mathrm{z}_{\mathrm{3}} =\overset{−} {\mathrm{z}}_{\mathrm{2}} \\ $$$$\mathrm{z}_{\mathrm{3}} =\mathrm{2}\sqrt{\mathrm{2}}\:\mathrm{e}^{−\frac{\mathrm{2}\pi}{\mathrm{3}}\mathrm{i}\:} \\ $$

Commented by malwan last updated on 09/Sep/20

If z=[r;θ]⇒z^(−) =[r;2π−θ]=[r;−θ]  but Ifz=[r;π−θ]⇒z^(−) =[r;2π−(π−θ)]  =[r;π+θ]  so z=[2(√2);((2π)/3)]⇒z^(−) =[2(√2);((4π)/3)]

$${If}\:{z}=\left[{r};\theta\right]\Rightarrow\overline {{z}}=\left[{r};\mathrm{2}\pi−\theta\right]=\left[{r};−\theta\right] \\ $$$${but}\:{Ifz}=\left[{r};\pi−\theta\right]\Rightarrow\overline {{z}}=\left[{r};\mathrm{2}\pi−\left(\pi−\theta\right)\right] \\ $$$$=\left[{r};\pi+\theta\right] \\ $$$${so}\:{z}=\left[\mathrm{2}\sqrt{\mathrm{2}};\frac{\mathrm{2}\pi}{\mathrm{3}}\right]\Rightarrow\overline {{z}}=\left[\mathrm{2}\sqrt{\mathrm{2}};\frac{\mathrm{4}\pi}{\mathrm{3}}\right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com