Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 112751 by bemath last updated on 09/Sep/20

Answered by bobhans last updated on 09/Sep/20

let w = a+bi and z = p+qi   where z^− =p−qi   ⇒w−2z = a+bi−2p−2qi = 9  ⇒(a−2p)+(b−2q)i = 9+0.i  → { ((a−2p=9→a=9+2p)),((b= 2q)) :}  ⇒3w−wz^− =(3a+3bi)−(a+bi)(p−qi)=17−30i  (3a+3bi)−(ap−aqi+bpi+bq)=17−30i  3a+3bi−(ap+bq+(bp−aq)i)=17−30i  (3a−ap−bq)+(3b−bp+aq)i=17−30i  → { ((3a−ap−bq=17)),((3b−bp+aq=−30)) :}  → { ((27+6p−9p−2p^2 −2q^2 =17)),((6q−2pq+9q+2pq=−30)) :}  → { ((27−3p−2p^2 −2q^2 =17)),((15q=−30, q=−2 then b=−4)) :}  (∗)27−3p−2p^2 −8=17  2p^2 +3p−2=0, (2p−1)(p+2)=0   { ((p=(1/2) →a=9+1=10)),((p=−2→a=9−4=5)) :}  therefore case(1) w=10−4i & z=(1/2)−2i  case(2)w=5−4i & z=−2−2i

$$\mathrm{let}\:\mathrm{w}\:=\:\mathrm{a}+\mathrm{bi}\:\mathrm{and}\:\mathrm{z}\:=\:\mathrm{p}+\mathrm{qi}\: \\ $$$$\mathrm{where}\:\overset{−} {\mathrm{z}}=\mathrm{p}−\mathrm{qi}\: \\ $$$$\Rightarrow\mathrm{w}−\mathrm{2z}\:=\:\mathrm{a}+\mathrm{bi}−\mathrm{2p}−\mathrm{2qi}\:=\:\mathrm{9} \\ $$$$\Rightarrow\left(\mathrm{a}−\mathrm{2p}\right)+\left(\mathrm{b}−\mathrm{2q}\right)\mathrm{i}\:=\:\mathrm{9}+\mathrm{0}.\mathrm{i} \\ $$$$\rightarrow\begin{cases}{\mathrm{a}−\mathrm{2p}=\mathrm{9}\rightarrow\mathrm{a}=\mathrm{9}+\mathrm{2p}}\\{\mathrm{b}=\:\mathrm{2q}}\end{cases} \\ $$$$\Rightarrow\mathrm{3w}−\mathrm{w}\overset{−} {\mathrm{z}}=\left(\mathrm{3a}+\mathrm{3bi}\right)−\left(\mathrm{a}+\mathrm{bi}\right)\left(\mathrm{p}−\mathrm{qi}\right)=\mathrm{17}−\mathrm{30i} \\ $$$$\left(\mathrm{3a}+\mathrm{3bi}\right)−\left(\mathrm{ap}−\mathrm{aqi}+\mathrm{bpi}+\mathrm{bq}\right)=\mathrm{17}−\mathrm{30i} \\ $$$$\mathrm{3a}+\mathrm{3bi}−\left(\mathrm{ap}+\mathrm{bq}+\left(\mathrm{bp}−\mathrm{aq}\right)\mathrm{i}\right)=\mathrm{17}−\mathrm{30i} \\ $$$$\left(\mathrm{3a}−\mathrm{ap}−\mathrm{bq}\right)+\left(\mathrm{3b}−\mathrm{bp}+\mathrm{aq}\right)\mathrm{i}=\mathrm{17}−\mathrm{30i} \\ $$$$\rightarrow\begin{cases}{\mathrm{3a}−\mathrm{ap}−\mathrm{bq}=\mathrm{17}}\\{\mathrm{3b}−\mathrm{bp}+\mathrm{aq}=−\mathrm{30}}\end{cases} \\ $$$$\rightarrow\begin{cases}{\mathrm{27}+\mathrm{6p}−\mathrm{9p}−\mathrm{2p}^{\mathrm{2}} −\mathrm{2q}^{\mathrm{2}} =\mathrm{17}}\\{\mathrm{6q}−\mathrm{2pq}+\mathrm{9q}+\mathrm{2pq}=−\mathrm{30}}\end{cases} \\ $$$$\rightarrow\begin{cases}{\mathrm{27}−\mathrm{3p}−\mathrm{2p}^{\mathrm{2}} −\mathrm{2q}^{\mathrm{2}} =\mathrm{17}}\\{\mathrm{15q}=−\mathrm{30},\:\mathrm{q}=−\mathrm{2}\:\mathrm{then}\:\mathrm{b}=−\mathrm{4}}\end{cases} \\ $$$$\left(\ast\right)\mathrm{27}−\mathrm{3p}−\mathrm{2p}^{\mathrm{2}} −\mathrm{8}=\mathrm{17} \\ $$$$\mathrm{2p}^{\mathrm{2}} +\mathrm{3p}−\mathrm{2}=\mathrm{0},\:\left(\mathrm{2p}−\mathrm{1}\right)\left(\mathrm{p}+\mathrm{2}\right)=\mathrm{0} \\ $$$$\begin{cases}{\mathrm{p}=\frac{\mathrm{1}}{\mathrm{2}}\:\rightarrow\mathrm{a}=\mathrm{9}+\mathrm{1}=\mathrm{10}}\\{\mathrm{p}=−\mathrm{2}\rightarrow\mathrm{a}=\mathrm{9}−\mathrm{4}=\mathrm{5}}\end{cases} \\ $$$$\mathrm{therefore}\:\mathrm{case}\left(\mathrm{1}\right)\:\mathrm{w}=\mathrm{10}−\mathrm{4i}\:\&\:\mathrm{z}=\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2i} \\ $$$$\mathrm{case}\left(\mathrm{2}\right)\mathrm{w}=\mathrm{5}−\mathrm{4i}\:\&\:\mathrm{z}=−\mathrm{2}−\mathrm{2i} \\ $$

Commented by bemath last updated on 09/Sep/20

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com