Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 112782 by bemath last updated on 09/Sep/20

without L′Hopital  lim_(x→π)  ((cos ((x/2)))/(x−π))

$$\mathrm{without}\:\mathrm{L}'\mathrm{Hopital} \\ $$$$\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)}{\mathrm{x}−\pi} \\ $$

Answered by john santu last updated on 09/Sep/20

setting x = π+s , s→0  lim_(s→0)  ((cos ((π/2)+(s/2)))/s) = lim_(s→0)  ((−sin ((s/2)))/s)=−(1/2)

$${setting}\:{x}\:=\:\pi+{s}\:,\:{s}\rightarrow\mathrm{0} \\ $$$$\underset{{s}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}}+\frac{{s}}{\mathrm{2}}\right)}{{s}}\:=\:\underset{{s}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\mathrm{sin}\:\left(\frac{{s}}{\mathrm{2}}\right)}{{s}}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Answered by Dwaipayan Shikari last updated on 09/Sep/20

lim_(x→π) −(1/2) ((sin((π/2)−(x/2)))/(((π/2)−(x/2))))=−(1/2)

$$\underset{{x}\rightarrow\pi} {\mathrm{lim}}−\frac{\mathrm{1}}{\mathrm{2}}\:\frac{{sin}\left(\frac{\pi}{\mathrm{2}}−\frac{{x}}{\mathrm{2}}\right)}{\left(\frac{\pi}{\mathrm{2}}−\frac{{x}}{\mathrm{2}}\right)}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Answered by Aziztisffola last updated on 09/Sep/20

lim_(x→π)  ((cos ((x/2)))/(x−π))=cos′((x/2))∣_(x=π) =−(1/2) sin((π/2))   =−(1/2)

$$\underset{\mathrm{x}\rightarrow\pi} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)}{\mathrm{x}−\pi}=\mathrm{cos}'\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\mid_{\mathrm{x}=\pi} =−\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{sin}\left(\frac{\pi}{\mathrm{2}}\right) \\ $$$$\:=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by malwan last updated on 09/Sep/20

this is L^′ Hopital

$${this}\:{is}\:{L}^{'} {Hopital}\: \\ $$

Commented by Aziztisffola last updated on 09/Sep/20

I use this property ;derivitive in one  point x_(0 ) ; this is not l′Hopital rule  lim_(x→x_0 ) ((f(x)−f(x_0 ))/(x−x_0 ))=f ′(x_0 )   let f(x)=cos((x/2))  and x_0 =π  lim_(x→π) ((f(x)−f(π))/(x−π)) =f ′(π)= cos′((π/2))

$$\mathrm{I}\:\mathrm{use}\:\mathrm{this}\:\mathrm{property}\:;\mathrm{derivitive}\:\mathrm{in}\:\mathrm{one} \\ $$$$\mathrm{point}\:{x}_{\mathrm{0}\:} ;\:\mathrm{this}\:\mathrm{is}\:\mathrm{not}\:\mathrm{l}'\mathrm{Hopital}\:\mathrm{rule} \\ $$$$\underset{{x}\rightarrow{x}_{\mathrm{0}} } {\mathrm{lim}}\frac{{f}\left({x}\right)−{f}\left({x}_{\mathrm{0}} \right)}{{x}−{x}_{\mathrm{0}} }={f}\:'\left({x}_{\mathrm{0}} \right) \\ $$$$\:\mathrm{let}\:{f}\left({x}\right)=\mathrm{cos}\left(\frac{{x}}{\mathrm{2}}\right)\:\:{and}\:{x}_{\mathrm{0}} =\pi \\ $$$$\underset{{x}\rightarrow\pi} {\mathrm{lim}}\frac{{f}\left({x}\right)−{f}\left(\pi\right)}{{x}−\pi}\:={f}\:'\left(\pi\right)=\:\mathrm{cos}'\left(\frac{\pi}{\mathrm{2}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com