Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 112808 by Aina Samuel Temidayo last updated on 09/Sep/20

Answered by 1549442205PVT last updated on 10/Sep/20

We have log_2 (10+2x)=log_(10) (x−4)+2  ⇔[log_2 (10+2x)−2]−log_(10) (x−4)=0(1)  We need the condition x>4.Then  log_2 (10+2x)−2=log_4 (10+2x)^2 −2  ≥log_4 (80x)−2=log_4 (5x)(2)  (since (a+b)^2 ≥4ab⇒(10+2x)^2 ≥80x)  Now we prove log_4 (5x)>log_(10) (x−4)  Indeed,we have log_4 (5x)>log_(10) (5x)(3)  but since x>4,so  5x>x−4.This   implies that log_(10) (5x)>log_(10) (x−4)(4)  From (2)(3)(4) we get  log_2 (10+2x)−2>log_(10) (x−4).Hence  LHS(1)>0 which means the equation  has no solutions  Thus,there don′t exist x satisfying   the equality  log_2 (10+2x)=log_(10) (x−4)+2

$$\mathrm{We}\:\mathrm{have}\:\mathrm{log}_{\mathrm{2}} \left(\mathrm{10}+\mathrm{2x}\right)=\mathrm{log}_{\mathrm{10}} \left(\mathrm{x}−\mathrm{4}\right)+\mathrm{2} \\ $$$$\Leftrightarrow\left[\mathrm{log}_{\mathrm{2}} \left(\mathrm{10}+\mathrm{2x}\right)−\mathrm{2}\right]−\mathrm{log}_{\mathrm{10}} \left(\mathrm{x}−\mathrm{4}\right)=\mathrm{0}\left(\mathrm{1}\right) \\ $$$$\mathrm{We}\:\mathrm{need}\:\mathrm{the}\:\mathrm{condition}\:\mathrm{x}>\mathrm{4}.\mathrm{Then} \\ $$$$\mathrm{log}_{\mathrm{2}} \left(\mathrm{10}+\mathrm{2x}\right)−\mathrm{2}=\mathrm{log}_{\mathrm{4}} \left(\mathrm{10}+\mathrm{2x}\right)^{\mathrm{2}} −\mathrm{2} \\ $$$$\geqslant\mathrm{log}_{\mathrm{4}} \left(\mathrm{80x}\right)−\mathrm{2}=\mathrm{log}_{\mathrm{4}} \left(\mathrm{5x}\right)\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{since}\:\left(\mathrm{a}+\mathrm{b}\right)^{\mathrm{2}} \geqslant\mathrm{4ab}\Rightarrow\left(\mathrm{10}+\mathrm{2x}\right)^{\mathrm{2}} \geqslant\mathrm{80x}\right) \\ $$$$\mathrm{Now}\:\mathrm{we}\:\mathrm{prove}\:\mathrm{log}_{\mathrm{4}} \left(\mathrm{5x}\right)>\mathrm{log}_{\mathrm{10}} \left(\mathrm{x}−\mathrm{4}\right) \\ $$$$\mathrm{Indeed},\mathrm{we}\:\mathrm{have}\:\mathrm{log}_{\mathrm{4}} \left(\mathrm{5x}\right)>\mathrm{log}_{\mathrm{10}} \left(\mathrm{5x}\right)\left(\mathrm{3}\right) \\ $$$$\mathrm{but}\:\mathrm{since}\:\mathrm{x}>\mathrm{4},\mathrm{so}\:\:\mathrm{5x}>\mathrm{x}−\mathrm{4}.\mathrm{This}\: \\ $$$$\mathrm{implies}\:\mathrm{that}\:\mathrm{log}_{\mathrm{10}} \left(\mathrm{5x}\right)>\mathrm{log}_{\mathrm{10}} \left(\mathrm{x}−\mathrm{4}\right)\left(\mathrm{4}\right) \\ $$$$\mathrm{From}\:\left(\mathrm{2}\right)\left(\mathrm{3}\right)\left(\mathrm{4}\right)\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{log}_{\mathrm{2}} \left(\mathrm{10}+\mathrm{2x}\right)−\mathrm{2}>\mathrm{log}_{\mathrm{10}} \left(\mathrm{x}−\mathrm{4}\right).\mathrm{Hence} \\ $$$$\mathrm{LHS}\left(\mathrm{1}\right)>\mathrm{0}\:\mathrm{which}\:\mathrm{means}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{has}\:\mathrm{no}\:\mathrm{solutions} \\ $$$$\boldsymbol{\mathrm{Thus}},\boldsymbol{\mathrm{there}}\:\boldsymbol{\mathrm{don}}'\boldsymbol{\mathrm{t}}\:\boldsymbol{\mathrm{exist}}\:\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{satisfying}}\: \\ $$$$\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{equality}} \\ $$$$\boldsymbol{\mathrm{log}}_{\mathrm{2}} \left(\mathrm{10}+\mathrm{2}\boldsymbol{\mathrm{x}}\right)=\boldsymbol{\mathrm{log}}_{\mathrm{10}} \left(\boldsymbol{\mathrm{x}}−\mathrm{4}\right)+\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com