Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 112840 by bemath last updated on 10/Sep/20

solve y′′−y′+e^(2x) y = 0

$$\mathrm{solve}\:\mathrm{y}''−\mathrm{y}'+\mathrm{e}^{\mathrm{2x}} \mathrm{y}\:=\:\mathrm{0} \\ $$

Answered by john santu last updated on 10/Sep/20

 solve y′′−y′ +e^(2x)  y = 0.   substitute u = e^x    { (((dy/dx) = e^x  = u)),(((d^2 y/dx^2 ) = (d/dx)((dy/dx))= (d/dx)(u (dy/du))= u^2  (d^2 y/du^2 ) +u (dy/du))) :}  Hence y′′−y′ + e^(2x) y =   (u^2  (d^2 y/du^2 ) + u (dy/dx))−(u (dy/du))+u^2 y = 0  ⇒ u^2  (d^2 y/du^2 ) +u^2 y = 0  so : u^2 ((d^2 y/du^2 ) + y) = 0  because u = e^x  , u ≠ 0 , so we can   divide by u^2  ⇒ (d^2 y/du^2 ) + y = 0  homogenous solution   λ^2 +1 = 0 ; λ = ± i   y = C_1  cos u + C_2 sin u  y = C_1 cos (e^x ) + C_2 sin (e^x )       ((JS)/(a math farmer))

$$\:{solve}\:{y}''−{y}'\:+{e}^{\mathrm{2}{x}} \:{y}\:=\:\mathrm{0}. \\ $$$$\:{substitute}\:{u}\:=\:{e}^{{x}} \\ $$$$\begin{cases}{\frac{{dy}}{{dx}}\:=\:{e}^{{x}} \:=\:{u}}\\{\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:=\:\frac{{d}}{{dx}}\left(\frac{{dy}}{{dx}}\right)=\:\frac{{d}}{{dx}}\left({u}\:\frac{{dy}}{{du}}\right)=\:{u}^{\mathrm{2}} \:\frac{{d}^{\mathrm{2}} {y}}{{du}^{\mathrm{2}} }\:+{u}\:\frac{{dy}}{{du}}}\end{cases} \\ $$$${Hence}\:{y}''−{y}'\:+\:{e}^{\mathrm{2}{x}} {y}\:=\: \\ $$$$\left({u}^{\mathrm{2}} \:\frac{{d}^{\mathrm{2}} {y}}{{du}^{\mathrm{2}} }\:+\:{u}\:\frac{{dy}}{{dx}}\right)−\left({u}\:\frac{{dy}}{{du}}\right)+{u}^{\mathrm{2}} {y}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:{u}^{\mathrm{2}} \:\frac{{d}^{\mathrm{2}} {y}}{{du}^{\mathrm{2}} }\:+{u}^{\mathrm{2}} {y}\:=\:\mathrm{0} \\ $$$${so}\::\:{u}^{\mathrm{2}} \left(\frac{{d}^{\mathrm{2}} {y}}{{du}^{\mathrm{2}} }\:+\:{y}\right)\:=\:\mathrm{0} \\ $$$${because}\:{u}\:=\:{e}^{{x}} \:,\:{u}\:\neq\:\mathrm{0}\:,\:{so}\:{we}\:{can}\: \\ $$$${divide}\:{by}\:{u}^{\mathrm{2}} \:\Rightarrow\:\frac{{d}^{\mathrm{2}} {y}}{{du}^{\mathrm{2}} }\:+\:{y}\:=\:\mathrm{0} \\ $$$${homogenous}\:{solution}\: \\ $$$$\lambda^{\mathrm{2}} +\mathrm{1}\:=\:\mathrm{0}\:;\:\lambda\:=\:\pm\:{i}\: \\ $$$${y}\:=\:{C}_{\mathrm{1}} \:\mathrm{cos}\:{u}\:+\:{C}_{\mathrm{2}} \mathrm{sin}\:{u} \\ $$$${y}\:=\:{C}_{\mathrm{1}} \mathrm{cos}\:\left({e}^{{x}} \right)\:+\:{C}_{\mathrm{2}} \mathrm{sin}\:\left({e}^{{x}} \right) \\ $$$$\:\:\:\:\:\frac{{JS}}{{a}\:{math}\:{farmer}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com