Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 112863 by bemath last updated on 10/Sep/20

(1)lim_(x→∞) (((2x+3)/(2x−1)))^(4x+2)   (2) lim_(x→∞) (((3x+1)/(3x−1)))^(4x−2)

(1)limx(2x+32x1)4x+2(2)limx(3x+13x1)4x2

Commented by bobhans last updated on 22/Sep/20

(1) lim_(x→∞) (((2x+3)/(2x−1)))^(4x+2) = e^(lim_(x→∞) (((2x+3)/(2x−1)) −1). (4x+2))   = e^(lim_(x→∞) (((4(4x+2))/(2x−1))))  = e^8

(1)limx(2x+32x1)4x+2=elimx(2x+32x11).(4x+2)=elimx(4(4x+2)2x1)=e8

Answered by bobhans last updated on 10/Sep/20

 lim_(x→∞)  (((3x−1+2)/(3x−1)))^(4x−2)  = lim_(x→∞) (1+(2/(3x−1)))^(4x−2)   let u = (2/(3x−1)), u→0 and 3x−1 = (2/u)   x = ((2+u)/(3u)) . then lim_(u→0) (1+u)^(((4u+8)/(3u))−2)   lim_(u→0) [(1+u)^(1/u) ]^((8−2u)/3) = e^(lim_(u→0)  (((8−2u)/3)))  = e^(8/3)

limx(3x1+23x1)4x2=limx(1+23x1)4x2letu=23x1,u0and3x1=2ux=2+u3u.thenlimu0(1+u)4u+83u2limu0[(1+u)1u]82u3=elimu0(82u3)=e83

Answered by bobhans last updated on 10/Sep/20

lim_(x→∞) (((2x−1+4)/(2x−1)))^(4x+2) =lim_(x→∞) (1+(4/(2x−1)))^(4x+2)   let q = (4/(2x−1))→x = ((4+q)/(2q))  lim_(q→0) [(1+q)^(((8+2q)/q)+2) ]= lim_(q→0) [(1+q)^(1/q) ]^(4q+8)   = e^(lim_(q→0) (4q+8)) = e^8

limx(2x1+42x1)4x+2=limx(1+42x1)4x+2letq=42x1x=4+q2qlimq0[(1+q)8+2qq+2]=limq0[(1+q)1q]4q+8=elimq0(4q+8)=e8

Answered by mathmax by abdo last updated on 10/Sep/20

1) let f(x) =(((2x+3)/(2x−1)))^(4x+2)  ⇒f(x) =e^((4x+2)ln(((2x+3)/(2x−1))))   we have ln(((2x+3)/(2x−1))) =ln(((2x−1 +4)/(2x−1))) =ln(1+(4/(2x−1)))∼(4/(2x−1))  (4x+2)ln(((2x+3)/(2x−1))) ∼4.((4x+2)/(2x−1)) ∼8 ⇒f(x) ∼e^8  ⇒  lim_(x→+∞) f(x) =e^8

1)letf(x)=(2x+32x1)4x+2f(x)=e(4x+2)ln(2x+32x1)wehaveln(2x+32x1)=ln(2x1+42x1)=ln(1+42x1)42x1(4x+2)ln(2x+32x1)4.4x+22x18f(x)e8limx+f(x)=e8

Answered by mathmax by abdo last updated on 10/Sep/20

2)let g(x) =(((3x+1)/(3x−1)))^(4x−2)  ⇒g(x) =e^((4x−2)ln(((3x+1)/(3x−1))))   we have ln(((3x+1)/(3x−1))) =ln(((3x−1+2)/(3x−1))) =ln( 1+(2/(3x−1)))∼(2/(3x−1)) ⇒  (4x−2)ln(((3x+1)/(3x−1))) ∼2×((4x−2)/(3x−1)) ∼(8/3) ⇒lim_(x→∞) g(x) =e^(8/3)

2)letg(x)=(3x+13x1)4x2g(x)=e(4x2)ln(3x+13x1)wehaveln(3x+13x1)=ln(3x1+23x1)=ln(1+23x1)23x1(4x2)ln(3x+13x1)2×4x23x183limxg(x)=e83

Terms of Service

Privacy Policy

Contact: info@tinkutara.com