Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 112902 by mohammad17 last updated on 10/Sep/20

find the angle between 3y+(x/( (√3)))=1 , ((√3)/2)y−x=2  help me sir

$${find}\:{the}\:{angle}\:{between}\:\mathrm{3}{y}+\frac{{x}}{\:\sqrt{\mathrm{3}}}=\mathrm{1}\:,\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{y}−{x}=\mathrm{2} \\ $$$${help}\:{me}\:{sir} \\ $$

Answered by bemath last updated on 10/Sep/20

m_1 = ((−(1/( (√3))))/3)=−(1/(3(√3))) ; m_2 = (1/((((√3)/2))))=(2/( (√3)))  say the angle between both line  is α then tan α=∣((m_2 −m_1 )/(1+m_2 .m_1 ))∣  tan α=∣(((6+1)/( 3(√3)))/(1−(2/9)))∣ = (((21)/( (√3)))/7) = (3/( (√3)))  α = tan^(−1) ((√3) ) = 60°

$$\mathrm{m}_{\mathrm{1}} =\:\frac{−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}}{\mathrm{3}}=−\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{3}}}\:;\:\mathrm{m}_{\mathrm{2}} =\:\frac{\mathrm{1}}{\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}} \\ $$$$\mathrm{say}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{between}\:\mathrm{both}\:\mathrm{line} \\ $$$$\mathrm{is}\:\alpha\:\mathrm{then}\:\mathrm{tan}\:\alpha=\mid\frac{\mathrm{m}_{\mathrm{2}} −\mathrm{m}_{\mathrm{1}} }{\mathrm{1}+\mathrm{m}_{\mathrm{2}} .\mathrm{m}_{\mathrm{1}} }\mid \\ $$$$\mathrm{tan}\:\alpha=\mid\frac{\frac{\mathrm{6}+\mathrm{1}}{\:\mathrm{3}\sqrt{\mathrm{3}}}}{\mathrm{1}−\frac{\mathrm{2}}{\mathrm{9}}}\mid\:=\:\frac{\frac{\mathrm{21}}{\:\sqrt{\mathrm{3}}}}{\mathrm{7}}\:=\:\frac{\mathrm{3}}{\:\sqrt{\mathrm{3}}} \\ $$$$\alpha\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{3}}\:\right)\:=\:\mathrm{60}° \\ $$

Commented by mohammad17 last updated on 10/Sep/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Answered by mathmax by abdo last updated on 10/Sep/20

3y+(x/(√3)) =1 ⇒3(√3)y +x =(√3) ⇒x+3(√3)y−(√3)=0  ⇒the director verctor is u^→ (−3(√3),1)  ((√3)/2)y−x =2 ⇒(√3)y−2x =4 ⇒−2x+(√3)y−4=0 ⇒2x−(√3)y+4=0 ⇒  the director vector is v^→ ((√3),2)  cos(u,v) =((u.v)/(∣u∣.∣v∣)) and sin(u,v) =((det(u,v))/(∣u∣.∣v∣)) ⇒tan(u,v) =((det(u,v))/(u.v))  =( determinant (((−3(√3)        (√3))),((1                    2)))/((−3(√3)).(√3)+1×2)) =((−7(√3))/(−7)) =(√3)  we have tan(u,v) =(√3) ⇒(u,v) =(u,v) =(π/3)[π]

$$\mathrm{3y}+\frac{\mathrm{x}}{\sqrt{\mathrm{3}}}\:=\mathrm{1}\:\Rightarrow\mathrm{3}\sqrt{\mathrm{3}}\mathrm{y}\:+\mathrm{x}\:=\sqrt{\mathrm{3}}\:\Rightarrow\mathrm{x}+\mathrm{3}\sqrt{\mathrm{3}}\mathrm{y}−\sqrt{\mathrm{3}}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{the}\:\mathrm{director}\:\mathrm{verctor}\:\mathrm{is}\:\overset{\rightarrow} {\mathrm{u}}\left(−\mathrm{3}\sqrt{\mathrm{3}},\mathrm{1}\right) \\ $$$$\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{y}−\mathrm{x}\:=\mathrm{2}\:\Rightarrow\sqrt{\mathrm{3}}\mathrm{y}−\mathrm{2x}\:=\mathrm{4}\:\Rightarrow−\mathrm{2x}+\sqrt{\mathrm{3}}\mathrm{y}−\mathrm{4}=\mathrm{0}\:\Rightarrow\mathrm{2x}−\sqrt{\mathrm{3}}\mathrm{y}+\mathrm{4}=\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{the}\:\mathrm{director}\:\mathrm{vector}\:\mathrm{is}\:\overset{\rightarrow} {\mathrm{v}}\left(\sqrt{\mathrm{3}},\mathrm{2}\right) \\ $$$$\mathrm{cos}\left(\mathrm{u},\mathrm{v}\right)\:=\frac{\mathrm{u}.\mathrm{v}}{\mid\mathrm{u}\mid.\mid\mathrm{v}\mid}\:\mathrm{and}\:\mathrm{sin}\left(\mathrm{u},\mathrm{v}\right)\:=\frac{\mathrm{det}\left(\mathrm{u},\mathrm{v}\right)}{\mid\mathrm{u}\mid.\mid\mathrm{v}\mid}\:\Rightarrow\mathrm{tan}\left(\mathrm{u},\mathrm{v}\right)\:=\frac{\mathrm{det}\left(\mathrm{u},\mathrm{v}\right)}{\mathrm{u}.\mathrm{v}} \\ $$$$=\frac{\begin{vmatrix}{−\mathrm{3}\sqrt{\mathrm{3}}\:\:\:\:\:\:\:\:\sqrt{\mathrm{3}}}\\{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}}\end{vmatrix}}{\left(−\mathrm{3}\sqrt{\mathrm{3}}\right).\sqrt{\mathrm{3}}+\mathrm{1}×\mathrm{2}}\:=\frac{−\mathrm{7}\sqrt{\mathrm{3}}}{−\mathrm{7}}\:=\sqrt{\mathrm{3}} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{tan}\left(\mathrm{u},\mathrm{v}\right)\:=\sqrt{\mathrm{3}}\:\Rightarrow\left(\mathrm{u},\mathrm{v}\right)\:=\left(\mathrm{u},\mathrm{v}\right)\:=\frac{\pi}{\mathrm{3}}\left[\pi\right] \\ $$

Commented by mohammad17 last updated on 10/Sep/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by mathmax by abdo last updated on 11/Sep/20

you are welcome

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Answered by Dwaipayan Shikari last updated on 10/Sep/20

3y+(x/( (√3)))=1            ((√3)/2)y−x=2⇒y=(2/( (√3)))x+(4/( (√3)))  y=−(x/(3(√3)))+(1/3)  tanθ=∣((−(1/(3(√3)))−(2/( (√3))))/(1−(2/9)))∣=(√3)  θ=(π/3)

$$\mathrm{3}{y}+\frac{{x}}{\:\sqrt{\mathrm{3}}}=\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{y}−{x}=\mathrm{2}\Rightarrow{y}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}{x}+\frac{\mathrm{4}}{\:\sqrt{\mathrm{3}}} \\ $$$${y}=−\frac{{x}}{\mathrm{3}\sqrt{\mathrm{3}}}+\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${tan}\theta=\mid\frac{−\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{3}}}−\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}}{\mathrm{1}−\frac{\mathrm{2}}{\mathrm{9}}}\mid=\sqrt{\mathrm{3}} \\ $$$$\theta=\frac{\pi}{\mathrm{3}} \\ $$$$ \\ $$

Commented by mohammad17 last updated on 10/Sep/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com