Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 113000 by Aina Samuel Temidayo last updated on 10/Sep/20

The first 23 natural numbers  are written in an increasing order  beside each other to form a single  number. What is the remainder when  this number is divided by 18?

$$\mathrm{The}\:\mathrm{first}\:\mathrm{23}\:\mathrm{natural}\:\mathrm{numbers} \\ $$$$\mathrm{are}\:\mathrm{written}\:\mathrm{in}\:\mathrm{an}\:\mathrm{increasing}\:\mathrm{order} \\ $$$$\mathrm{beside}\:\mathrm{each}\:\mathrm{other}\:\mathrm{to}\:\mathrm{form}\:\mathrm{a}\:\mathrm{single} \\ $$$$\mathrm{number}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{when} \\ $$$$\mathrm{this}\:\mathrm{number}\:\mathrm{is}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{18}? \\ $$

Answered by floor(10²Eta[1]) last updated on 11/Sep/20

N=12345...212223(mod18)  18=9.2  the solution to N(mod 18) is equivalent  to find the solution to the system:   { ((N≡x(mod2))),((N≡y(mod9))) :}  I:  since N is odd so N≡1(mod 2)  II:  any number N when divided by 9 leaves  the same remainder that the number   formed by the sum of the digits of N  N≡S(N)(mod 9), where S(N) is the  sum of the digits of N.  N≡1+2+...+1+0+1+1+...(mod9)  (1+...+9)+(1+0+...+1+9)+(2+0+...+2+3)  =45+(10.1+(0+1+2+...+9))+(2.4+(0+1+2+3))  =45+10+45+8+6=114≡6(mod9)   { ((N≡1(mod 2))),((N≡6(mod 9))) :}  ⇒N=9k+6≡1(mod2)∴k≡1(mod2)  k=2t+1⇒N=18t+15  N leaves remainder 15 when divided by 18.

$$\mathrm{N}=\mathrm{12345}...\mathrm{212223}\left(\mathrm{mod18}\right) \\ $$$$\mathrm{18}=\mathrm{9}.\mathrm{2} \\ $$$$\mathrm{the}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{N}\left(\mathrm{mod}\:\mathrm{18}\right)\:\mathrm{is}\:\mathrm{equivalent} \\ $$$$\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{the}\:\mathrm{system}: \\ $$$$\begin{cases}{\mathrm{N}\equiv\mathrm{x}\left(\mathrm{mod2}\right)}\\{\mathrm{N}\equiv\mathrm{y}\left(\mathrm{mod9}\right)}\end{cases} \\ $$$$\mathrm{I}: \\ $$$$\mathrm{since}\:\mathrm{N}\:\mathrm{is}\:\mathrm{odd}\:\mathrm{so}\:\mathrm{N}\equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{2}\right) \\ $$$$\mathrm{II}: \\ $$$$\mathrm{any}\:\mathrm{number}\:\mathrm{N}\:\mathrm{when}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{9}\:\mathrm{leaves} \\ $$$$\mathrm{the}\:\mathrm{same}\:\mathrm{remainder}\:\mathrm{that}\:\mathrm{the}\:\mathrm{number}\: \\ $$$$\mathrm{formed}\:\mathrm{by}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{N} \\ $$$$\mathrm{N}\equiv\mathrm{S}\left(\mathrm{N}\right)\left(\mathrm{mod}\:\mathrm{9}\right),\:\mathrm{where}\:\mathrm{S}\left(\mathrm{N}\right)\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{N}. \\ $$$$\mathrm{N}\equiv\mathrm{1}+\mathrm{2}+...+\mathrm{1}+\mathrm{0}+\mathrm{1}+\mathrm{1}+...\left(\mathrm{mod9}\right) \\ $$$$\left(\mathrm{1}+...+\mathrm{9}\right)+\left(\mathrm{1}+\mathrm{0}+...+\mathrm{1}+\mathrm{9}\right)+\left(\mathrm{2}+\mathrm{0}+...+\mathrm{2}+\mathrm{3}\right) \\ $$$$=\mathrm{45}+\left(\mathrm{10}.\mathrm{1}+\left(\mathrm{0}+\mathrm{1}+\mathrm{2}+...+\mathrm{9}\right)\right)+\left(\mathrm{2}.\mathrm{4}+\left(\mathrm{0}+\mathrm{1}+\mathrm{2}+\mathrm{3}\right)\right) \\ $$$$=\mathrm{45}+\mathrm{10}+\mathrm{45}+\mathrm{8}+\mathrm{6}=\mathrm{114}\equiv\mathrm{6}\left(\mathrm{mod9}\right) \\ $$$$\begin{cases}{\mathrm{N}\equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{2}\right)}\\{\mathrm{N}\equiv\mathrm{6}\left(\mathrm{mod}\:\mathrm{9}\right)}\end{cases} \\ $$$$\Rightarrow\mathrm{N}=\mathrm{9k}+\mathrm{6}\equiv\mathrm{1}\left(\mathrm{mod2}\right)\therefore\mathrm{k}\equiv\mathrm{1}\left(\mathrm{mod2}\right) \\ $$$$\mathrm{k}=\mathrm{2t}+\mathrm{1}\Rightarrow\mathrm{N}=\mathrm{18t}+\mathrm{15} \\ $$$$\mathrm{N}\:\mathrm{leaves}\:\mathrm{remainder}\:\mathrm{15}\:\mathrm{when}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{18}. \\ $$

Commented by Aina Samuel Temidayo last updated on 11/Sep/20

Thanks.

$$\mathrm{Thanks}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com