Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 113070 by ZiYangLee last updated on 11/Sep/20

If n∈Z^+ , prove that  (1/(2(√1)))+(1/(3(√2)))+(1/(4(√3)))+...(1/((n+1)(√n)))<2

IfnZ+,provethat 121+132+143+...1(n+1)n<2

Answered by 1549442205PVT last updated on 11/Sep/20

We have (1/((n+1)(√n)))=(√n).(1/((n+1)n))  =(√n)((1/n)−(1/(n+1)))=(√n)((1/( (√n)))+(1/( (√(n+1)))))((1/( (√n)))−(1/( (√(n+1)))))  =(1+(1/( (√(n+1)))))((1/( (√n)))−(1/( (√(n+1)))))  Since (1+(1/( (√(n+1)))))<2,so [(1/((n+1)(√n)))]  <2((1/( (√n)))−(1/( (√(n+1))))).Hence,give n=1,2,...  we get  (1/(2(√1)))=(1/2)<2((1/1)−(1/( (√2)))),(1/(3(√2)))<2((1/( (√2)))−(1/( (√3)))),  ...,(1/((n+1)(√n)))<2((1/( (√n)))−(1/( (√(n+1)))))  Adding up n above inequalities we get  LHS=(1/(2(√1)))+(1/(3(√2)))+(1/(4(√3)))+...(1/((n+1)(√n)))<  2[(1/( (√1)))−(1/( (√2)))+(1/( (√2)))−(1/( (√3)))+...+(1/( (√n)))−(1/( (√(n+1)))))  =2(1−(1/( (√(n+1)))))<2  Therefore,we have   (1/(2(√1)))+(1/(3(√2)))+(1/(4(√3)))+...(1/((n+1)(√n)))<2(q.e.d)

Wehave1(n+1)n=n.1(n+1)n =n(1n1n+1)=n(1n+1n+1)(1n1n+1) =(1+1n+1)(1n1n+1) Since(1+1n+1)<2,so[1(n+1)n] <2(1n1n+1).Hence,given=1,2,... weget 121=12<2(1112),132<2(1213), ...,1(n+1)n<2(1n1n+1) Addingupnaboveinequalitiesweget LHS=121+132+143+...1(n+1)n< 2[1112+1213+...+1n1n+1) =2(11n+1)<2 Therefore,wehave 121+132+143+...1(n+1)n<2(q.e.d)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com