Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 11309 by FilupS last updated on 20/Mar/17

ax^2 +by^2 +cz^2 =r^2      Point P=(a, b, c)  Point Q=(l, m, n)  Both points lie on the curve     what is the shortest path from point  P to Q, along the outside of the curve?

$${ax}^{\mathrm{2}} +{by}^{\mathrm{2}} +{cz}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\: \\ $$$$\mathrm{Point}\:{P}=\left({a},\:{b},\:{c}\right) \\ $$$$\mathrm{Point}\:{Q}=\left({l},\:{m},\:{n}\right) \\ $$$$\mathrm{Both}\:\mathrm{points}\:\mathrm{lie}\:\mathrm{on}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\: \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{path}\:\mathrm{from}\:\mathrm{point} \\ $$$${P}\:\mathrm{to}\:{Q},\:\mathrm{along}\:\mathrm{the}\:\mathrm{outside}\:\mathrm{of}\:\mathrm{the}\:\mathrm{curve}? \\ $$

Commented by mrW1 last updated on 20/Mar/17

This is a very difficult question. If  a,b,c>0, ax^2 +by^2 +cz^2 =r^2  is a triaxial  ellipsoid. Your question is then about  geodesics on a triaxial ellipsoid.

$${This}\:{is}\:{a}\:{very}\:{difficult}\:{question}.\:{If} \\ $$$${a},{b},{c}>\mathrm{0},\:{ax}^{\mathrm{2}} +{by}^{\mathrm{2}} +{cz}^{\mathrm{2}} ={r}^{\mathrm{2}} \:{is}\:{a}\:{triaxial} \\ $$$${ellipsoid}.\:{Your}\:{question}\:{is}\:{then}\:{about} \\ $$$${geodesics}\:{on}\:{a}\:{triaxial}\:{ellipsoid}. \\ $$

Commented by FilupS last updated on 21/Mar/17

what if a=b=c=1?

$$\mathrm{what}\:\mathrm{if}\:{a}={b}={c}=\mathrm{1}? \\ $$

Commented by mrW1 last updated on 21/Mar/17

Then it is a sphere with radius r. The shortest path  on a sphere is the great−circle distance.    Point P(x_1 ,y_1 ,z_1 )  Point Q(x_2 ,y_2 ,z_2 )  Vector p=OP^(→) , q=OQ^(→)   Angle between p and q =Δα  ∣p∣=(√(x_1 ^2 +y_1 ^2 +z_1 ^2 ))=r  ∣q∣=(√(x_2 ^2 +y_2 ^2 +z_2 ^2 ))=r  cos Δα=((p∙q)/(∣p∣×∣q∣))=((x_1 x_2 +y_1 y_2 +z_1 z_2 )/r^2 )  Δα=cos^(−1) (((x_1 x_2 +y_1 y_2 +z_1 z_2 )/r^2 ))    The shortest path from P to Q is  d=Δα×r

$${Then}\:{it}\:{is}\:{a}\:{sphere}\:{with}\:{radius}\:{r}.\:{The}\:{shortest}\:{path} \\ $$$${on}\:{a}\:{sphere}\:{is}\:{the}\:{great}−{circle}\:{distance}. \\ $$$$ \\ $$$${Point}\:{P}\left({x}_{\mathrm{1}} ,{y}_{\mathrm{1}} ,{z}_{\mathrm{1}} \right) \\ $$$${Point}\:{Q}\left({x}_{\mathrm{2}} ,{y}_{\mathrm{2}} ,{z}_{\mathrm{2}} \right) \\ $$$${Vector}\:\boldsymbol{{p}}=\overset{\rightarrow} {{OP}},\:\boldsymbol{{q}}=\overset{\rightarrow} {{OQ}} \\ $$$${Angle}\:{between}\:\boldsymbol{{p}}\:{and}\:\boldsymbol{{q}}\:=\Delta\alpha \\ $$$$\mid\boldsymbol{{p}}\mid=\sqrt{{x}_{\mathrm{1}} ^{\mathrm{2}} +{y}_{\mathrm{1}} ^{\mathrm{2}} +{z}_{\mathrm{1}} ^{\mathrm{2}} }={r} \\ $$$$\mid\boldsymbol{{q}}\mid=\sqrt{{x}_{\mathrm{2}} ^{\mathrm{2}} +{y}_{\mathrm{2}} ^{\mathrm{2}} +{z}_{\mathrm{2}} ^{\mathrm{2}} }={r} \\ $$$$\mathrm{cos}\:\Delta\alpha=\frac{\boldsymbol{{p}}\centerdot\boldsymbol{{q}}}{\mid\boldsymbol{{p}}\mid×\mid\boldsymbol{{q}}\mid}=\frac{{x}_{\mathrm{1}} {x}_{\mathrm{2}} +{y}_{\mathrm{1}} {y}_{\mathrm{2}} +{z}_{\mathrm{1}} {z}_{\mathrm{2}} }{{r}^{\mathrm{2}} } \\ $$$$\Delta\alpha=\mathrm{cos}^{−\mathrm{1}} \left(\frac{{x}_{\mathrm{1}} {x}_{\mathrm{2}} +{y}_{\mathrm{1}} {y}_{\mathrm{2}} +{z}_{\mathrm{1}} {z}_{\mathrm{2}} }{{r}^{\mathrm{2}} }\right) \\ $$$$ \\ $$$${The}\:{shortest}\:{path}\:{from}\:{P}\:{to}\:{Q}\:{is} \\ $$$${d}=\Delta\alpha×{r} \\ $$

Commented by FilupS last updated on 21/Mar/17

fascinating!

$$\mathrm{fascinating}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com