Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 113110 by gopikrishnan last updated on 11/Sep/20

∫_0 ^1 (√(x(x−1)dx))

10x(x1)dx

Commented by 1549442205PVT last updated on 11/Sep/20

The function (√(x(x−1))) is defined on  set X=(−∞,0]∪[1,+∞) and isn′t  defined on (0,1),so ∫_0 ^1 (√(x(x−1)dx))  don′t exist  You should see your question again

Thefunctionx(x1)isdefinedonsetX=(,0][1,+)andisntdefinedon(0,1),so10x(x1)dxdontexistYoushouldseeyourquestionagain

Commented by gopikrishnan last updated on 11/Sep/20

ok sir

oksir

Answered by MJS_new last updated on 11/Sep/20

I think you mean ∫(√(x(x−1))) dx  ∫(√(x(x−1)))dx=       [t=(√(x/(x−1))) → dx=−2(√(x(x−1)^3 ))dt]  =−2∫(t^2 /((t^2 −1)^3 ))dx=       [Ostrogradski′s method]  =((t(t^2 +1))/(4(t^2 −1)^2 ))+(1/4)∫(dt/(t^2 −1))=  =((t(t^2 +1))/(4(t^2 −1)^2 ))+(1/8)ln ((t−1)/(t+1)) =  =(1/4)(2x−1)(√(x(x−1)))+(1/4)ln ((√x)−(√(x−1))) +C  ⇒ ∫_0 ^1 (√(x(x−1)))dx=(π/8)i

Ithinkyoumeanx(x1)dxx(x1)dx=[t=xx1dx=2x(x1)3dt]=2t2(t21)3dx=[Ostrogradskismethod]=t(t2+1)4(t21)2+14dtt21==t(t2+1)4(t21)2+18lnt1t+1==14(2x1)x(x1)+14ln(xx1)+C10x(x1)dx=π8i

Commented by gopikrishnan last updated on 11/Sep/20

Thank u sir

Thankusir

Answered by abdomsup last updated on 11/Sep/20

i think  is ∫_0 ^1 (√(x(1−x)))dx  we do the changement (√x)=t ⇒  I =∫_0 ^1 t(√(1−t^2 ))(2t)dt  =2∫_0 ^1  t^2 (√(1−t^2 ))dt  =_(t=sinθ)     2∫_0 ^(π/2)  sin^2 θ cosθ cosθ dθ  =2∫_0 ^(π/2) ((1/2)sin(2θ))^2  dθ  =(1/2)∫_0 ^(π/2)  ((1−cos(4θ))/2) dθ  =(π/8) −(1/4)[(1/4)sin(4θ)]_0 ^(π/2)  =(π/8)−0  ⇒I=(π/8)

ithinkis01x(1x)dxwedothechangementx=tI=01t1t2(2t)dt=201t21t2dt=t=sinθ20π2sin2θcosθcosθdθ=20π2(12sin(2θ))2dθ=120π21cos(4θ)2dθ=π814[14sin(4θ)]0π2=π80I=π8

Commented by gopikrishnan last updated on 11/Sep/20

Thank u sir

Thankusir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com