Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 113187 by bobhans last updated on 11/Sep/20

a,b,c ∈N such that ((a(√3) +b)/(b(√3)+c)) ∈ Q, show  that ((a^2 +b^2 +c^2 )/(a+b+c)) ∈ Z

$$\mathrm{a},\mathrm{b},\mathrm{c}\:\in\mathbb{N}\:\mathrm{such}\:\mathrm{that}\:\frac{\mathrm{a}\sqrt{\mathrm{3}}\:+\mathrm{b}}{\mathrm{b}\sqrt{\mathrm{3}}+\mathrm{c}}\:\in\:\mathrm{Q},\:\mathrm{show} \\ $$$$\mathrm{that}\:\frac{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} }{\mathrm{a}+\mathrm{b}+\mathrm{c}}\:\in\:\mathbb{Z} \\ $$

Answered by bemath last updated on 11/Sep/20

Fact : (√3) ∉Q , p+q(√3) ∈Q if q=0  consider ((a(√3)+b)/(b(√3)+c)) ∈Q ⇒(((a(√3)+b)(b(√3)−c))/(3b−c))  =((3ab−bc+(√3)(b^2 −ac))/(3b−c)) ∈Q   it should be : b^2 −ac = 0 or b^2 =ac  now we have ((a^2 +b^2 +c^2 )/(a+b+c)) =  (((a+b+c)^2 −2(ab+ac+bc))/(a+b+c))=  (((a+b+c)^2 −2(ab+b^2 +bc))/(a+b+c))=  (((a+b+c)^2 −2b(a+b+c))/(a+b+c)) =  (a+b+c)−2b = a−b+c ∈ Z  (proved)

$$\mathrm{Fact}\::\:\sqrt{\mathrm{3}}\:\notin\mathrm{Q}\:,\:\mathrm{p}+\mathrm{q}\sqrt{\mathrm{3}}\:\in\mathrm{Q}\:\mathrm{if}\:\mathrm{q}=\mathrm{0} \\ $$$$\mathrm{consider}\:\frac{\mathrm{a}\sqrt{\mathrm{3}}+\mathrm{b}}{\mathrm{b}\sqrt{\mathrm{3}}+\mathrm{c}}\:\in\mathrm{Q}\:\Rightarrow\frac{\left(\mathrm{a}\sqrt{\mathrm{3}}+\mathrm{b}\right)\left(\mathrm{b}\sqrt{\mathrm{3}}−\mathrm{c}\right)}{\mathrm{3b}−\mathrm{c}} \\ $$$$=\frac{\mathrm{3ab}−\mathrm{bc}+\sqrt{\mathrm{3}}\left(\mathrm{b}^{\mathrm{2}} −\mathrm{ac}\right)}{\mathrm{3b}−\mathrm{c}}\:\in\mathrm{Q}\: \\ $$$$\mathrm{it}\:\mathrm{should}\:\mathrm{be}\::\:\mathrm{b}^{\mathrm{2}} −\mathrm{ac}\:=\:\mathrm{0}\:\mathrm{or}\:\mathrm{b}^{\mathrm{2}} =\mathrm{ac} \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{have}\:\frac{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} }{\mathrm{a}+\mathrm{b}+\mathrm{c}}\:= \\ $$$$\frac{\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{ab}+\mathrm{ac}+\mathrm{bc}\right)}{\mathrm{a}+\mathrm{b}+\mathrm{c}}= \\ $$$$\frac{\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{ab}+\mathrm{b}^{\mathrm{2}} +\mathrm{bc}\right)}{\mathrm{a}+\mathrm{b}+\mathrm{c}}= \\ $$$$\frac{\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)^{\mathrm{2}} −\mathrm{2b}\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)}{\mathrm{a}+\mathrm{b}+\mathrm{c}}\:= \\ $$$$\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)−\mathrm{2b}\:=\:\mathrm{a}−\mathrm{b}+\mathrm{c}\:\in\:\mathbb{Z} \\ $$$$\left(\mathrm{proved}\right) \\ $$

Commented by Aina Samuel Temidayo last updated on 12/Sep/20

But b^2 ≥2ac, you only considered  b^2 =2ac

$$\mathrm{But}\:\mathrm{b}^{\mathrm{2}} \geqslant\mathrm{2ac},\:\mathrm{you}\:\mathrm{only}\:\mathrm{considered} \\ $$$$\mathrm{b}^{\mathrm{2}} =\mathrm{2ac} \\ $$

Commented by bobhans last updated on 13/Sep/20

you are wrong

$$\mathrm{you}\:\mathrm{are}\:\mathrm{wrong} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com