Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 113188 by mathdave last updated on 11/Sep/20

proporsed by m.n july 1790  ∫_0 ^π ln(1−(1/2)sinx)dx

proporsedbym.njuly17900πln(112sinx)dx

Answered by mathdave last updated on 11/Sep/20

my solution to  I=∫_0 ^π ln(1−(1/2)sinx)dx=2∫_0 ^(π/2) ln(1−(1/2)sinx)dx.....(1)  and J=2∫_0 ^(π/2) ln(1+(1/2)sinx)dx...........(2)  adding (1) and (2)  I+J=2∫_0 ^(π/2) ln(1−((sin^2 x)/4))dx=2∫_0 ^(π/2) ln(cos^2 x+sin^2 x−((sin^2 x)/4))dx  I+J=2∫_0 ^(π/2) ln(cos^2 x+(3/4)sin^2 x)dx  recall that ∫_0 ^(π/2) ln(a^2 cos^2 x+b^2 sin^2 x)dx=πln(((a+b)/2))  I+J=2πln((1/2)−((√3)/4))=2πln(((2+(√3))/4))......(x)  subtracting (1) from (2)  J−I=2∫_0 ^(π/2) ln(((1+(1/2)sinx)/(1−(1/2)sinx)))dx    (apply faynmann trick)  J−I=2∫_0 ^(π/2) dx∫_(−(1/2)) ^(1/2) (((sinx)/(1+ysinx)))dx  J−I=2∫_0 ^(π/2) dx[∫_(−(1/2)) ^0 (((sinx)/(1+ysinx)))dy+∫_0 ^(1/2) (((sinx)/(1+ysinx)))dy]  put y=−y  J−I=2∫_0 ^(π/2) dx[∫_0 ^(1/2) (((sinx)/(1−ysinx)))dy+∫_0 ^(π/2) (((sinx)/(1+ysinx)))dy]  J−I=2∫_0 ^(π/2) dx[∫_0 ^(1/2) (((sinx(1+ysinx+1−ysinx))/((1−ysinx)(1+ysinx))))dy]  J−I=4∫_0 ^(π/2) dx∫_0 ^(1/2) (((sinx)/(1−y^2 sin^2 x)))dy     (but  sin^2 x=1−cos^2 x)  J−I=4∫_0 ^(π/2) dx∫_0 ^(1/2) (((sinx)/(1−y^2 +y^2 cos^2 x)))dy  J−I=4∫_0 ^(1/2) dy∫_0 ^(π/2) (((sinx)/((√(1−y^2 ))+(ycosx)^2 )))dx  let  Z=ycosx  ,A=(√(1−y^2 )),but  ∫(1/(A^2 +Z^2 ))dZ=(1/A)tan^(−1) ((Z/A))  J−I=−4∫_0 ^(1/2) dy[(1/(y(√(1−y^2 ))))tan^(−1) (((ycosx)/(√(1−y^2 ))))_0 ^(π/2) ]  J−I=4∫_0 ^(1/2) [((tan^(−1) ((y/(√(1−y^2 )))))/(y(√(1−y^2 ))))] dy    ( let  y=siny)  J−I=4∫_0 ^(π/6) (y/(siny))dy     (using IBP) note ∫(1/(siny))dy=ln(tan(y/2))  J−I=4[yln(tan(y/2))]_0 ^(π/6) −4∫_0 ^(π/6) ln(tan(y/2))dy  J−I=4•(π/6)ln(tan(π/(12)))−8∫_0 ^(π/(12)) ln(tany)dy  notes tan(A/2)=(√((1−cos2A)/(1+cos2A))) and from  lemma (2)  ∫_0 ^(π/(12)) ln(tany)dy=−(2/3)G  ∵J−I=(π/3)ln[((1−cos(π/6))/(1+cos(π/6)))]−8[−(2/3)G]  J−I=(π/3)[((2−(√3))/(2+(√3)))]+((16)/3)G=((16)/3)−((2π)/3)ln(2+(√3)).....(xx)  ∵I=∫_0 ^π ln(1−(1/2)sinx)dx=((J+I−(J−I))/2)  I=((2πln(((2+(√3))/4))−((16)/3)G+((2π)/3)ln(2+(√3)))/2)  I=πln(((2+(√3))/4))−(8/3)G+(π/3)ln(2+(√3))  ∵∫_0 ^π (1−(1/2)sinx)dx=((4π)/3)ln(2+(√3))−(8/3)G−2πln2  by mathdave(12/09/2020)

mysolutiontoI=0πln(112sinx)dx=20π2ln(112sinx)dx.....(1)andJ=20π2ln(1+12sinx)dx...........(2)adding(1)and(2)I+J=20π2ln(1sin2x4)dx=20π2ln(cos2x+sin2xsin2x4)dxI+J=20π2ln(cos2x+34sin2x)dxrecallthat0π2ln(a2cos2x+b2sin2x)dx=πln(a+b2)I+J=2πln(1234)=2πln(2+34)......(x)subtracting(1)from(2)JI=20π2ln(1+12sinx112sinx)dx(applyfaynmanntrick)JI=20π2dx1212(sinx1+ysinx)dxJI=20π2dx[120(sinx1+ysinx)dy+012(sinx1+ysinx)dy]puty=yJI=20π2dx[012(sinx1ysinx)dy+0π2(sinx1+ysinx)dy]JI=20π2dx[012(sinx(1+ysinx+1ysinx)(1ysinx)(1+ysinx))dy]JI=40π2dx012(sinx1y2sin2x)dy(butsin2x=1cos2x)JI=40π2dx012(sinx1y2+y2cos2x)dyJI=4012dy0π2(sinx1y2+(ycosx)2)dxletZ=ycosx,A=1y2,but1A2+Z2dZ=1Atan1(ZA)JI=4012dy[1y1y2tan1(ycosx1y2)0π2]JI=4012[tan1(y1y2)y1y2]dy(lety=siny)JI=40π6ysinydy(usingIBP)note1sinydy=ln(tany2)JI=4[yln(tany2)]0π640π6ln(tany2)dyJI=4π6ln(tanπ12)80π12ln(tany)dynotestanA2=1cos2A1+cos2Aandfromlemma(2)0π12ln(tany)dy=23GJI=π3ln[1cosπ61+cosπ6]8[23G]JI=π3[232+3]+163G=1632π3ln(2+3).....(xx)I=0πln(112sinx)dx=J+I(JI)2I=2πln(2+34)163G+2π3ln(2+3)2I=πln(2+34)83G+π3ln(2+3)0π(112sinx)dx=4π3ln(2+3)83G2πln2bymathdave(12/09/2020)

Commented by mnjuly1970 last updated on 11/Sep/20

exellent .very nice  grateful mr dave..

exellent.verynicegratefulmrdave..

Commented by Tawa11 last updated on 06/Sep/21

great sir

greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com