All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 113188 by mathdave last updated on 11/Sep/20
proporsedbym.njuly1790∫0πln(1−12sinx)dx
Answered by mathdave last updated on 11/Sep/20
mysolutiontoI=∫0πln(1−12sinx)dx=2∫0π2ln(1−12sinx)dx.....(1)andJ=2∫0π2ln(1+12sinx)dx...........(2)adding(1)and(2)I+J=2∫0π2ln(1−sin2x4)dx=2∫0π2ln(cos2x+sin2x−sin2x4)dxI+J=2∫0π2ln(cos2x+34sin2x)dxrecallthat∫0π2ln(a2cos2x+b2sin2x)dx=πln(a+b2)I+J=2πln(12−34)=2πln(2+34)......(x)subtracting(1)from(2)J−I=2∫0π2ln(1+12sinx1−12sinx)dx(applyfaynmanntrick)J−I=2∫0π2dx∫−1212(sinx1+ysinx)dxJ−I=2∫0π2dx[∫−120(sinx1+ysinx)dy+∫012(sinx1+ysinx)dy]puty=−yJ−I=2∫0π2dx[∫012(sinx1−ysinx)dy+∫0π2(sinx1+ysinx)dy]J−I=2∫0π2dx[∫012(sinx(1+ysinx+1−ysinx)(1−ysinx)(1+ysinx))dy]J−I=4∫0π2dx∫012(sinx1−y2sin2x)dy(butsin2x=1−cos2x)J−I=4∫0π2dx∫012(sinx1−y2+y2cos2x)dyJ−I=4∫012dy∫0π2(sinx1−y2+(ycosx)2)dxletZ=ycosx,A=1−y2,but∫1A2+Z2dZ=1Atan−1(ZA)J−I=−4∫012dy[1y1−y2tan−1(ycosx1−y2)0π2]J−I=4∫012[tan−1(y1−y2)y1−y2]dy(lety=siny)J−I=4∫0π6ysinydy(usingIBP)note∫1sinydy=ln(tany2)J−I=4[yln(tany2)]0π6−4∫0π6ln(tany2)dyJ−I=4∙π6ln(tanπ12)−8∫0π12ln(tany)dynotestanA2=1−cos2A1+cos2Aandfromlemma(2)∫0π12ln(tany)dy=−23G∵J−I=π3ln[1−cosπ61+cosπ6]−8[−23G]J−I=π3[2−32+3]+163G=163−2π3ln(2+3).....(xx)∵I=∫0πln(1−12sinx)dx=J+I−(J−I)2I=2πln(2+34)−163G+2π3ln(2+3)2I=πln(2+34)−83G+π3ln(2+3)∵∫0π(1−12sinx)dx=4π3ln(2+3)−83G−2πln2bymathdave(12/09/2020)
Commented by mnjuly1970 last updated on 11/Sep/20
exellent.verynicegratefulmrdave..
Commented by Tawa11 last updated on 06/Sep/21
greatsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com