Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 113190 by Dwaipayan Shikari last updated on 11/Sep/20

∫_0 ^1 ((logx)/(x−1))dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{logx}}{{x}−\mathrm{1}}{dx} \\ $$

Commented by Dwaipayan Shikari last updated on 11/Sep/20

−∫_0 ^1 ((logx)/(1−x))dx=−∫_0 ^1 ((log(1−x))/x)dx=∫_0 ^1 Σ_(n=1) ^∞ (x^(n−1) /n)  =Σ_(n=1) ^∞ ∫_0 ^1 (x^(n−1) /n)dx=Σ_(n=1) ^∞ (1/n^2 )=(π^2 /6)

$$−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{logx}}{\mathrm{1}−{x}}{dx}=−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{log}\left(\mathrm{1}−{x}\right)}{{x}}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}−\mathrm{1}} }{{n}} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{n}−\mathrm{1}} }{{n}}{dx}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$

Commented by Dwaipayan Shikari last updated on 11/Sep/20

Is it right?

$${Is}\:{it}\:{right}? \\ $$

Commented by Tawa11 last updated on 06/Sep/21

great sir

$$\mathrm{great}\:\mathrm{sir} \\ $$

Answered by mathdave last updated on 12/Sep/20

solution   let I=−∫_0 ^1 ((lnx)/(1−x))dx=−∫_0 ^1 Σ_(k=0) ^∞ x^k lnxdx  (∂/∂a)∣_(a=1) I(a)=−Σ_(k=0) ^∞ (∂/∂a)∫_0 ^1 x^k .x^(a−1) dx=−Σ_(k=0) ^∞ (∂/∂a)∫_0 ^1 x^(k+a−1) dx  I(a)=−Σ_(k=0) ^∞ (∂/∂a)[(1/(k+a))]  I(1)=Σ_(k=0) ^∞ (1/((k+1)^2 ))=Σ_(k=1) ^∞ (1/k^2 )=(π^2 /6)  ∵∫_0 ^1 ((lnx)/(x−1))dx=(π^2 /6)

$${solution}\: \\ $$$${let}\:{I}=−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}{x}}{\mathrm{1}−{x}}{dx}=−\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{k}} \mathrm{ln}{xdx} \\ $$$$\frac{\partial}{\partial{a}}\mid_{{a}=\mathrm{1}} {I}\left({a}\right)=−\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\partial}{\partial{a}}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{k}} .{x}^{{a}−\mathrm{1}} {dx}=−\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\partial}{\partial{a}}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{k}+{a}−\mathrm{1}} {dx} \\ $$$${I}\left({a}\right)=−\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\partial}{\partial{a}}\left[\frac{\mathrm{1}}{{k}+{a}}\right] \\ $$$${I}\left(\mathrm{1}\right)=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)^{\mathrm{2}} }=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$\because\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}{x}}{{x}−\mathrm{1}}{dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com