All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 113200 by bobhans last updated on 11/Sep/20
provethat2tan−1(13)+tan−1(17)=π4
Answered by john santu last updated on 11/Sep/20
(Q)provethat2tan−1(13)+tan−1(17)=π4.(sol)recalltan−1(13)=arg(3+i)→2tan−1(13)=2arg(3+i)=arg((3+i)2)=arg(8+6i)=arg(4+3i)nowwehave2tan−1(13)+tan−1(17)=arg(4+3i)+arg(7+i)=arg((4+3i)(7+i))=arg(25+25i)=arg(1+i)=π4.(✓)
Answered by Dwaipayan Shikari last updated on 11/Sep/20
2tan−113=tan−1(13+131−19)=tan−134tan−1(17)+tan−1(34)=tan−1(17+341−328)=tan−1(1)=π4
Terms of Service
Privacy Policy
Contact: info@tinkutara.com