All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 113275 by bemath last updated on 12/Sep/20
∫dx3sinx+sin3x?
Answered by bemath last updated on 12/Sep/20
I=∫dxsinx(3+sin2x)I=∫sinxdxsin2x(3+sin2x)I=∫−d(cosx)(1−cos2x)(4−cos2x)I=∫−du(1−u2)(4−u2);whereu=cosxI=−∫du(1+u)(1−u)(2+u)(2−u)I=16∫(1u−1)−(1u+1)du−112∫(1u−2−1u+2)duI=16ln∣u−1u+1∣−112ln∣u−2u+2∣+cI=16ln∣cosx−1cosx+1∣−112ln∣cosx−2cosx+2∣+c
Answered by abdomsup last updated on 12/Sep/20
I=∫dxsin3x+3sinx⇒I=∫dxsinx(sin2x+3)letdecomposeF(u)=1u(u2+3)F(u)=au+bu+cu2+3a=13,limu→+∞uF(u)=0a+b⇒b=−13F(−u)=−F(u)⇒c=0⇒F(u)=13u−u3(u2+3)⇒I=13∫dxsinx−13∫sinxsin2x+3∫dxsinx=tsn(x2)=t∫2dt(1+t2)2t1+t2=∫dtt=ln∣t∣+c1=ln∣tan(x2)∣+c1∫sinxsin2x+3dx=∫sinxdx4−cos2x=cosx=t∫−dt4−t2=∫dt(t−2)(t+2)=14∫(1t−2−1t+2)dt=14ln∣t−2t+2∣+c2=14ln∣cosx−2cosx+2∣+c2⇒I=13ln∣tan(x2)∣−112ln(2−cosx2+cosx)+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com