Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 113275 by bemath last updated on 12/Sep/20

 ∫ (dx/(3sin x+sin^3 x)) ?

dx3sinx+sin3x?

Answered by bemath last updated on 12/Sep/20

I = ∫ (dx/(sin x(3+sin^2 x)))  I=∫ ((sin x dx)/(sin^2 x(3+sin^2 x)))  I= ∫ ((−d(cos x))/((1−cos^2 x)(4−cos^2 x)))  I = ∫((−du)/((1−u^2 )(4−u^2 ))) ; where u =cos x  I=−∫ (du/((1+u)(1−u)(2+u)(2−u)))  I=(1/6)∫ ((1/(u−1)))−((1/(u+1)))du−(1/(12))∫ ((1/(u−2))−(1/(u+2)))du  I=(1/6)ln ∣((u−1)/(u+1))∣−(1/(12))ln ∣((u−2)/(u+2))∣ + c  I= (1/6)ln ∣((cos x−1)/(cos x+1))∣−(1/(12))ln ∣((cos x−2)/(cos x+2))∣ + c

I=dxsinx(3+sin2x)I=sinxdxsin2x(3+sin2x)I=d(cosx)(1cos2x)(4cos2x)I=du(1u2)(4u2);whereu=cosxI=du(1+u)(1u)(2+u)(2u)I=16(1u1)(1u+1)du112(1u21u+2)duI=16lnu1u+1112lnu2u+2+cI=16lncosx1cosx+1112lncosx2cosx+2+c

Answered by abdomsup last updated on 12/Sep/20

I =∫  (dx/(sin^3 x +3sinx)) ⇒  I =∫  (dx/(sinx(sin^2  x +3)))  let decompose F(u) =(1/(u(u^2 +3)))  F(u) =(a/u) +((bu +c)/(u^2  +3))  a =(1/3)  , lim_(u→+∞)   uF(u) =0  a+b ⇒b =−(1/3)  F(−u)=−F(u) ⇒c=0 ⇒  F(u) =(1/(3u))−(u/(3(u^2  +3)))  ⇒I =(1/3)∫  (dx/(sinx))−(1/3)∫ ((sinx)/(sin^2 x+3))  ∫  (dx/(sinx)) =_(tsn((x/2))=t)    ∫  ((2dt)/((1+t^2 )((2t)/(1+t^2 ))))  =∫ (dt/t) =ln∣t∣ +c_1 =ln∣tan((x/2))∣ +c_1   ∫  ((sinx)/(sin^2 x +3))dx =∫  ((sinx dx)/(4−cos^2 x))  =_(cosx =t)     ∫  ((−dt)/(4−t^2 )) =∫  (dt/((t−2)(t+2)))  =(1/4)∫((1/(t−2))−(1/(t+2)))dt =(1/4)ln∣((t−2)/(t+2))∣ +c_2   =(1/4)ln∣((cosx−2)/(cosx +2))∣ +c_2  ⇒  I =(1/3)ln∣tan((x/2))∣−(1/(12))ln(((2−cosx)/(2+cosx)))+C

I=dxsin3x+3sinxI=dxsinx(sin2x+3)letdecomposeF(u)=1u(u2+3)F(u)=au+bu+cu2+3a=13,limu+uF(u)=0a+bb=13F(u)=F(u)c=0F(u)=13uu3(u2+3)I=13dxsinx13sinxsin2x+3dxsinx=tsn(x2)=t2dt(1+t2)2t1+t2=dtt=lnt+c1=lntan(x2)+c1sinxsin2x+3dx=sinxdx4cos2x=cosx=tdt4t2=dt(t2)(t+2)=14(1t21t+2)dt=14lnt2t+2+c2=14lncosx2cosx+2+c2I=13lntan(x2)112ln(2cosx2+cosx)+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com