Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 113278 by mathdave last updated on 12/Sep/20

solve  ∫((√(x^2 +x+2−(√(4x^2 +4x+4))))/(x(√(x^4 +x^3 +x^2 ))))dx

solvex2+x+24x2+4x+4xx4+x3+x2dx

Answered by 1549442205PVT last updated on 13/Sep/20

x^2 +x+2−(√(4x^2 +4x+4))=  ((√(x^2 +x+1)))^2 −2(√(x^2 +x+1))+1  =((√(x^2 +x+1))−1)^2 ,x(√(x^4 +x^3 +x^2 ))=x^2 (√(x^2 +x+1))  Hence,F=∫((√(x^2 +x+2−(√(4x^2 +4x+4))))/(x(√(x^4 +x^3 +x^2 ))))dx  =∫(((√(x^2 +x+1))−1)/(x^2 (√(x^2 +x+1))))dx=∫((1/x^2 )−(1/(x^2 (√(x^2 +x+1)))))dx  We find J=∫(dx/(x^2 (√(x^2 +x+1))))=∫((√(x^2 +x+1))/(x^2 (x^2 +x+1)))dx  =∫(√(x^2 +x+1))(((−x+1)/x^2 )+(x/(x^2 +x+1)))dx  =∫(((√(x^2 +x+1))/x^2 )−((√(x^2 +x+1))/x)+(x/( (√(x^2 +x+1)))))dx  ==∫[((√(x^2 +x+1))/x^2 )−((√(x^2 +x+1))/x)−(1/(2(√(x^2 +x+1))))+((1/2)×((2x+1)/( (√(x^2 +x+1)))))]dx  (1/2)∫((2x+1)/( (√(x^2 +x+1))))dx=(1/2)∫(du/( (√u)))(u=x^2 +x+1)  =(√(x^2 +x+1))  Since ∫(dx/( (√(x^2 +λ))))=ln∣x+(√(x^2 +λ))∣+C  (1/2)∫(dx/( (√(x^2 +x+1))))=(1/2)∫((d(x+(1/2)))/( (√((x+(1/2))^2 +(3/4)))))=(1/2)ln∣x+(1/2)+(√(x^2 +x+1))∣  Therefore,we just need find  =∫(((√(x^2 +x+1))/x^2 )−((√(x^2 +x+1))/x))]dx=A+B  A=∫((√(x^2 +x+1))/x^2 )= −∫(√(x^2 +x+1))d((1/x))     =   _(by part) ((−(√(x^2 +x+1)))/x)+∫(1/x)×((2x+1)/( 2(√(x^2 +x+1))))dx  =((−(√(x^2 +x+1)))/x)+∫(dx/( (√(x^2 +x+1))))+∫(dx/(2x(√(x^2 +x+1))))  =((−(√(x^2 +x+1)))/x)+ln∣x+(1/2)+(√(x^2 +x+1))∣+(1/2)M(1)  B=∫((√(x^2 +x+1))/x)dx=     _(by parts) (√(x^2 +x+1))−  −∫[x.((.((((2x+1)x)/(2(√(x^2 +x+1))))−(√(x^2 +x+1))))/x^2 )]dx  =(√(x^2 +x+1))−∫((−x−2)/(2x(√(x^2 +x+1))))dx  =(√(x^2 +x+1))+∫(dx/(2(√(x^2 +x+1))))+∫(dx/(x(√(x^2 +x+1))))  =(√(x^2 +x+1))+(1/2)ln∣x+(1/2)+(√(x^2 +x+1))∣+M (2)  M=∫(dx/(x(√(x^2 +x+1))))=∫((2/(2x(√(x^2 +x+1))))×((2x+1−2(√(x^2 +x+1)))/(2x+1−2(√(x^2 +x+1)))))dx  =∫(((2x+1−2(√(x^2 +x+1)))/(2(√(x^2 +x+1))))×(2/(x(2x+1)−2(√(x^2 +x+1)))))dx  =∫(((2x+1)/(2(√(x^2 +x+1))))−1)((1/( (√(x^2 +x+1))−x−1))−(1/( (√(x^2 +x+1))−x+1)))dx  =∫(((((2x+1)/(2(√(x^2 +x+1))))−1)/( (√(x^2 +x+1))−x−1))−((((2x+1)/(2(√(x^2 +x+1))))−1)/( (√(x^2 +x+1))−x+1)))dx  =ln∣ (√(x^2 +x+1))−x−1∣−ln∣ (√(x^2 +x+1))−x+1∣  =ln∣(( (√(x^2 +x+1))−x−1)/( (√(x^2 +x+1))−x+1))∣(3)  From (1)(2)(3)we get  A+B=−((√(x^2 +x+1))/x)+ln∣x+(1/2)+(√(x^2 +x+1))∣  +(√(x^2 +x+1))+(1/2)ln∣x+(1/2)+(√(x^2 +x+1))∣  +(3/2)ln∣(((√(x^2 +x+1))−x−1)/( (√(x^2 +x+1))−x+1))∣(4)  Therefore,J=(√(x^2 +x+1))−(1/2)ln∣x+(1/2)+(√(x^2 +x+1))∣  +A+B=2(√(x^2 +x+1))+ln∣x+(1/2)+(√(x^2 +x+1))∣+  +(3/2)ln∣(((√(x^2 +x+1))−x−1)/( (√(x^2 +x+1))−x+1))∣.From that  F=−(1/x)+J=−(1/x)+A+B=2(√(x^2 +x+1))+ln∣x+(1/2)+(√(x^2 +x+1))∣+  +(3/2)ln∣(((√(x^2 +x+1))−x−1)/( (√(x^2 +x+1))−x+1))∣+C(C−constant)  Thus,final result is  F=∫((√(x^2 +x+2−(√(4x^2 +4x+4))))/(x(√(x^4 +x^3 +x^2 ))))dx  =−(1/x)+2(√(x^2 +x+1))+ln∣x+(1/2)+(√(x^2 +x+1))∣  +(3/2)ln∣(((√(x^2 +x+1))−x−1)/( (√(x^2 +x+1))−x+1))∣+C

x2+x+24x2+4x+4=(x2+x+1)22x2+x+1+1=(x2+x+11)2,xx4+x3+x2=x2x2+x+1Hence,F=x2+x+24x2+4x+4xx4+x3+x2dx=x2+x+11x2x2+x+1dx=(1x21x2x2+x+1)dxWefindJ=dxx2x2+x+1=x2+x+1x2(x2+x+1)dx=x2+x+1(x+1x2+xx2+x+1)dx=(x2+x+1x2x2+x+1x+xx2+x+1)dx==[x2+x+1x2x2+x+1x12x2+x+1+(12×2x+1x2+x+1)]dx122x+1x2+x+1dx=12duu(u=x2+x+1)=x2+x+1Sincedxx2+λ=lnx+x2+λ+C12dxx2+x+1=12d(x+12)(x+12)2+34=12lnx+12+x2+x+1Therefore,wejustneedfind=(x2+x+1x2x2+x+1x)]dx=A+BA=x2+x+1x2=x2+x+1d(1x)=bypartx2+x+1x+1x×2x+12x2+x+1dx=x2+x+1x+dxx2+x+1+dx2xx2+x+1=x2+x+1x+lnx+12+x2+x+1+12M(1)B=x2+x+1xdx=bypartsx2+x+1[x..((2x+1)x2x2+x+1x2+x+1)x2]dx=x2+x+1x22xx2+x+1dx=x2+x+1+dx2x2+x+1+dxxx2+x+1=x2+x+1+12lnx+12+x2+x+1+M(2)M=dxxx2+x+1=(22xx2+x+1×2x+12x2+x+12x+12x2+x+1)dx=(2x+12x2+x+12x2+x+1×2x(2x+1)2x2+x+1)dx=(2x+12x2+x+11)(1x2+x+1x11x2+x+1x+1)dx=(2x+12x2+x+11x2+x+1x12x+12x2+x+11x2+x+1x+1)dx=lnx2+x+1x1lnx2+x+1x+1=lnx2+x+1x1x2+x+1x+1(3)From(1)(2)(3)wegetA+B=x2+x+1x+lnx+12+x2+x+1+x2+x+1+12lnx+12+x2+x+1+32lnx2+x+1x1x2+x+1x+1(4)Therefore,J=x2+x+112lnx+12+x2+x+1+A+B=2x2+x+1+lnx+12+x2+x+1++32lnx2+x+1x1x2+x+1x+1.FromthatF=1x+J=1x+A+B=2x2+x+1+lnx+12+x2+x+1++32lnx2+x+1x1x2+x+1x+1+C(Cconstant)Thus,finalresultisF=x2+x+24x2+4x+4xx4+x3+x2dx=1x+2x2+x+1+lnx+12+x2+x+1+32lnx2+x+1x1x2+x+1x+1+C

Commented by mathdave last updated on 12/Sep/20

nice one

niceone

Commented by 1549442205PVT last updated on 13/Sep/20

I like smart Sir′s solution

IlikesmartSirssolution

Commented by Tawa11 last updated on 06/Sep/21

grest sir

grestsir

Answered by MJS_new last updated on 12/Sep/20

∫((√(x^2 +x+1−2(√(x^2 +x+1))+1))/(x^2 (√(x^2 +x+1))))dx=  =∫(dx/x^2 )−∫(dx/(x^2 (√(x^2 +x+1))))  (1)  ∫(dx/x^2 )=−(1/x)  (2)  −∫(dx/(x^2 (√(x^2 +x+1))))=       [t=((√3)/2)(2x+1+2(√(x^2 +x+1)) → dx=((√(3(x^2 +x+1)))/(2x+1+2(√(x^2 +x+1))))]  =−16∫(t/( ((√3)t^2 −2t−(√3))^2 ))dt=  =(√3)∫((1/(2((√3)t−3)))−(1/(2((√3)t+1)))−(3/(((√3)t−3)^2 ))+(1/(((√3)t+2)^2 )))dt=  =((2(t+(√3)))/( (√3)t^2 −2t−(√3)))−(1/2)ln (((√3)t+1)/( (√3)t−3))=  =((√(x^2 +x+1))/x)+(1/2)ln x −(1/2)ln (x+2+2(√(x^2 +x+1))) +C    ⇒    ∫((√(x^2 +x+2−(√(4x^2 +4x+4))))/(x(√(x^4 +x^3 +x^2 ))))dx=  =((−1+(√(x^2 +x+1)))/x)+(1/2)ln x −(1/2)ln (x+2+2(√(x^2 +x+1))) +C

x2+x+12x2+x+1+1x2x2+x+1dx==dxx2dxx2x2+x+1(1)dxx2=1x(2)dxx2x2+x+1=[t=32(2x+1+2x2+x+1dx=3(x2+x+1)2x+1+2x2+x+1]=16t(3t22t3)2dt==3(12(3t3)12(3t+1)3(3t3)2+1(3t+2)2)dt==2(t+3)3t22t312ln3t+13t3==x2+x+1x+12lnx12ln(x+2+2x2+x+1)+Cx2+x+24x2+4x+4xx4+x3+x2dx==1+x2+x+1x+12lnx12ln(x+2+2x2+x+1)+C

Commented by Tawa11 last updated on 06/Sep/21

great sir

greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com