Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 113346 by mohammad17 last updated on 12/Sep/20

Answered by mathmax by abdo last updated on 13/Sep/20

z =x+iy f(z) =cos(2z) =((e^(2iz)  +e^(−2iz) )/2) =((e^(2i(x+iy))  +e^(−2i(x+iy)) )/2)  =((e^(2ix−2y)   +e^(−2ix)  e^(2y) )/2) =((e^(−2y) {cos(2x)+isin(2x)}+e^(2y) {cos(2x)−isin(2x)})/2)  =cos(2x).((e^(2y)  +e^(−2y) )/2)  −i  sin(2x).((e^(2y) −e^(−2y) )/2)  =cos(2x)ch(y)−i sin(2x)sh(2y) =u(x,y) +i v(x,y) with  u(x,y) =cos(2x)ch2y and v(x,y) =−sin(2x)sh(2y)  we have  (∂u/∂x) =−2sin(2x)ch2y   and (∂v/∂y) =−2sin(2x)ch(2y) ⇒  (∂u/∂x) =(∂v/∂y) (1) also (∂u/∂y) =2cos(2x)sh2y   and −(∂v/∂x) =2cos(2x)sh(2y) ⇒  (∂u/∂y) =−(∂v/∂x)  (2)  so the condition of cauchy Rieman are verified

$$\mathrm{z}\:=\mathrm{x}+\mathrm{iy}\:\mathrm{f}\left(\mathrm{z}\right)\:=\mathrm{cos}\left(\mathrm{2z}\right)\:=\frac{\mathrm{e}^{\mathrm{2iz}} \:+\mathrm{e}^{−\mathrm{2iz}} }{\mathrm{2}}\:=\frac{\mathrm{e}^{\mathrm{2i}\left(\mathrm{x}+\mathrm{iy}\right)} \:+\mathrm{e}^{−\mathrm{2i}\left(\mathrm{x}+\mathrm{iy}\right)} }{\mathrm{2}} \\ $$$$=\frac{\mathrm{e}^{\mathrm{2ix}−\mathrm{2y}} \:\:+\mathrm{e}^{−\mathrm{2ix}} \:\mathrm{e}^{\mathrm{2y}} }{\mathrm{2}}\:=\frac{\mathrm{e}^{−\mathrm{2y}} \left\{\mathrm{cos}\left(\mathrm{2x}\right)+\mathrm{isin}\left(\mathrm{2x}\right)\right\}+\mathrm{e}^{\mathrm{2y}} \left\{\mathrm{cos}\left(\mathrm{2x}\right)−\mathrm{isin}\left(\mathrm{2x}\right)\right\}}{\mathrm{2}} \\ $$$$=\mathrm{cos}\left(\mathrm{2x}\right).\frac{\mathrm{e}^{\mathrm{2y}} \:+\mathrm{e}^{−\mathrm{2y}} }{\mathrm{2}}\:\:−\mathrm{i}\:\:\mathrm{sin}\left(\mathrm{2x}\right).\frac{\mathrm{e}^{\mathrm{2y}} −\mathrm{e}^{−\mathrm{2y}} }{\mathrm{2}} \\ $$$$=\mathrm{cos}\left(\mathrm{2x}\right)\mathrm{ch}\left(\mathrm{y}\right)−\mathrm{i}\:\mathrm{sin}\left(\mathrm{2x}\right)\mathrm{sh}\left(\mathrm{2y}\right)\:=\mathrm{u}\left(\mathrm{x},\mathrm{y}\right)\:+\mathrm{i}\:\mathrm{v}\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{with} \\ $$$$\mathrm{u}\left(\mathrm{x},\mathrm{y}\right)\:=\mathrm{cos}\left(\mathrm{2x}\right)\mathrm{ch2y}\:\mathrm{and}\:\mathrm{v}\left(\mathrm{x},\mathrm{y}\right)\:=−\mathrm{sin}\left(\mathrm{2x}\right)\mathrm{sh}\left(\mathrm{2y}\right)\:\:\mathrm{we}\:\mathrm{have} \\ $$$$\frac{\partial\mathrm{u}}{\partial\mathrm{x}}\:=−\mathrm{2sin}\left(\mathrm{2x}\right)\mathrm{ch2y}\:\:\:\mathrm{and}\:\frac{\partial\mathrm{v}}{\partial\mathrm{y}}\:=−\mathrm{2sin}\left(\mathrm{2x}\right)\mathrm{ch}\left(\mathrm{2y}\right)\:\Rightarrow \\ $$$$\frac{\partial\mathrm{u}}{\partial\mathrm{x}}\:=\frac{\partial\mathrm{v}}{\partial\mathrm{y}}\:\left(\mathrm{1}\right)\:\mathrm{also}\:\frac{\partial\mathrm{u}}{\partial\mathrm{y}}\:=\mathrm{2cos}\left(\mathrm{2x}\right)\mathrm{sh2y}\:\:\:\mathrm{and}\:−\frac{\partial\mathrm{v}}{\partial\mathrm{x}}\:=\mathrm{2cos}\left(\mathrm{2x}\right)\mathrm{sh}\left(\mathrm{2y}\right)\:\Rightarrow \\ $$$$\frac{\partial\mathrm{u}}{\partial\mathrm{y}}\:=−\frac{\partial\mathrm{v}}{\partial\mathrm{x}}\:\:\left(\mathrm{2}\right)\:\:\mathrm{so}\:\mathrm{the}\:\mathrm{condition}\:\mathrm{of}\:\mathrm{cauchy}\:\mathrm{Rieman}\:\mathrm{are}\:\mathrm{verified} \\ $$

Commented by mohammad17 last updated on 13/Sep/20

thank you sir can you help me in question 4

$${thank}\:{you}\:{sir}\:{can}\:{you}\:{help}\:{me}\:{in}\:{question}\:\mathrm{4} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com