Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 113452 by mathdave last updated on 13/Sep/20

Answered by maths mind last updated on 13/Sep/20

x=sin(t)  ⇒=∫_0 ^(π/2) ((tcos(t)dt)/(sin(t)+cos(t)))=I  J=∫_0 ^(π/2) ((tsin(t))/(sin(t)+cos(t)))dt  I+J=∫_0 ^(π/2) tdt=(π^2 /8)  I−J=∫_0 ^(π/2) t((cos(t)−sin(t))/(sin(t)+cos(t)))dt IBP  =[tln(sin(t)+cos(t))]_0 ^(π/2) −∫_0 ^(π/2) ln(sin(t)+cos(t))dt  =−∫_0 ^(π/2) ln((√(2c))os((π/4)−t))dt  =−∫_0 ^(π/2) ln((√2))dt−∫_0 ^(π/4) ln(cos((π/4)−t))dt−∫_(π/4) ^(π/2) ln(cos((π/4)−t))dt  =−(π/4)ln(2)−∫_0 ^(π/4) cos(t)dt+∫_0 ^(π/4) cos((π/4)−(u+(π/4)))du  =−(π/4)ln(2)−2∫_0 ^(π/4) ln(cos(t))dt  lets find ∫_0 ^(π/4) ln(cos(t))dt_(=A)   we use G=−∫_0 ^(π/4) ln(tg(t))dt=catalan Constante  and call B=∫_0 ^(π/4) ln(sin(t))dt  A−B=G  A+B=∫_0 ^(π/4) ln(sin(2t)/2)dt=−ln(2)(π/4)+(1/2)∫_0 ^(π/2) ln(sin(x))dx  =((−ln(2)π)/4)+(1/2).−((πlog(2))/2)=−((πlog(2))/2)  A=(1/2)(G−π((log(2))/2))  I−J=−((πln(2))/4)−2.(1/2)(G−πlog(2).(1/2))  =−G+((πlog(2))/4)  I=(1/2)(−G+((πlog(2))/4)+(π^2 /8))=∫_0 ^1 ((sin^(−1) (x))/(x+(√(1−x^2 ))))dx⋍0.431

$${x}={sin}\left({t}\right) \\ $$$$\Rightarrow=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{tcos}\left({t}\right){dt}}{{sin}\left({t}\right)+{cos}\left({t}\right)}={I} \\ $$$${J}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{tsin}\left({t}\right)}{{sin}\left({t}\right)+{cos}\left({t}\right)}{dt} \\ $$$${I}+{J}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {tdt}=\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$${I}−{J}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {t}\frac{{cos}\left({t}\right)−{sin}\left({t}\right)}{{sin}\left({t}\right)+{cos}\left({t}\right)}{dt}\:{IBP} \\ $$$$=\left[{tln}\left({sin}\left({t}\right)+{cos}\left({t}\right)\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\left({t}\right)+{cos}\left({t}\right)\right){dt} \\ $$$$=−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\sqrt{\mathrm{2}{c}}{os}\left(\frac{\pi}{\mathrm{4}}−{t}\right)\right){dt} \\ $$$$=−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\sqrt{\mathrm{2}}\right){dt}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cos}\left(\frac{\pi}{\mathrm{4}}−{t}\right)\right){dt}−\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cos}\left(\frac{\pi}{\mathrm{4}}−{t}\right)\right){dt} \\ $$$$=−\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right)−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {cos}\left({t}\right){dt}+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {cos}\left(\frac{\pi}{\mathrm{4}}−\left({u}+\frac{\pi}{\mathrm{4}}\right)\right){du} \\ $$$$=−\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right)−\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cos}\left({t}\right)\right){dt} \\ $$$${lets}\:{find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cos}\left({t}\right)\right){d}\underset{={A}} {{t}} \\ $$$${we}\:{use}\:{G}=−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({tg}\left({t}\right)\right){dt}={catalan}\:{Constante} \\ $$$${and}\:{call}\:{B}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({sin}\left({t}\right)\right){dt} \\ $$$${A}−{B}={G} \\ $$$${A}+{B}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({sin}\left(\mathrm{2}{t}\right)/\mathrm{2}\right){dt}=−{ln}\left(\mathrm{2}\right)\frac{\pi}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\left({x}\right)\right){dx} \\ $$$$=\frac{−{ln}\left(\mathrm{2}\right)\pi}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}.−\frac{\pi{log}\left(\mathrm{2}\right)}{\mathrm{2}}=−\frac{\pi{log}\left(\mathrm{2}\right)}{\mathrm{2}} \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{2}}\left({G}−\pi\frac{{log}\left(\mathrm{2}\right)}{\mathrm{2}}\right) \\ $$$${I}−{J}=−\frac{\pi{ln}\left(\mathrm{2}\right)}{\mathrm{4}}−\mathrm{2}.\frac{\mathrm{1}}{\mathrm{2}}\left({G}−\pi{log}\left(\mathrm{2}\right).\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$=−{G}+\frac{\pi{log}\left(\mathrm{2}\right)}{\mathrm{4}} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}\left(−{G}+\frac{\pi{log}\left(\mathrm{2}\right)}{\mathrm{4}}+\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{sin}^{−\mathrm{1}} \left({x}\right)}{{x}+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx}\backsimeq\mathrm{0}.\mathrm{431} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by mathdave last updated on 14/Sep/20

smile correct man keep the spirit up

$${smile}\:{correct}\:{man}\:{keep}\:{the}\:{spirit}\:{up} \\ $$

Commented by Tawa11 last updated on 06/Sep/21

great sir

$$\mathrm{great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com