Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 113587 by mohammad17 last updated on 14/Sep/20

Commented by mohammad17 last updated on 14/Sep/20

help me sir

helpmesir

Answered by 1549442205PVT last updated on 14/Sep/20

Q1  1)((2x+1)/(x+2))≤1⇔((2x+1)/(x+2))−1≤0⇔((x−1)/(x+2))≤0  ⇔x∈(−2;1]  2)(2y+1)^2 >9⇔4y^2 +4y−8>0  ⇔y^2 +y−2>0⇔(y−1)(y+2)>0  ⇔y∈(−∞;−2)∪(1;+∞)  3)∣3x−4∣>2(1)   determinant ((x,,(4/3),),((∣3x−4∣),(4−3x),0,(3x−4)),((∣3x−4∣−2),(2−3x),(−2),(3x−6)))  From above tablet we have two cases  i) { ((x<4/3)),((2−3x>0)) :}⇔ { ((x<4/3)),((3x<2)) :}⇔ { ((x<4/3)),((x<2/3)) :}⇔x<2/3  ii) { ((x≥4/3)),((3x−6>0)) :}⇔ { ((x≥4/3)),((x>2)) :}⇔x>2  Combining two cases we get  x∈(−∞;2/3)∪(2;+∞)  4)y^2 +2y−3>0⇔(y−1)(y+3)>0  ⇔y∈(−∞;−3)∪(1;+∞)  Q2.  1)The equation of the line pass through  the point (0;5) and (4;2) is   ((y−5)/(x−0))=((2−5)/(4−0))=((−3)/4)⇒y=((−3)/4)x+5  The equation of the line pass through  the point (0;−2) and (3;6) is  ((y+2)/(x−0))=((6+2)/(3−0))=(8/3)⇒y=(8/3)x−2  The acute angle between two lines  is θ then tanθ=∣((k_1 −k_2 )/(1+k_1 k_2 ))∣ (1) where   k_1 =((−3)/4),k_2 =(8/3).Replace into (1) we get  tanθ=∣(((8/3)+(3/4))/(1+(((−3)/4))(8/3)))∣=∣((41)/(−12))∣=((41)/(12))  ⇒θ≈73°41′  2)The intersection point of two  graphs of two functions y=1−x^2   and y=(√(1−x^2 )) is roots of the system   { ((y=1−x^2 (1))),((y=(√(1−x^2 )) (2))) :}  ⇒1−x^2 =(√(1−x^2 )) ⇔ { ((x^2 ≤1)),(((1−x^2 )^2 =(1−x^2 ))) :}  ⇔ { ((∣x∣≤1(3))),((1−x^2 )[(1−x^2 )−1]=0(4))) :}  i)1−x^2 =0⇔x^2 =1⇔x=±1⇒y=0  ii)1−x^2 −1=0⇔x^2 =0⇔x=0⇒y=1  Thus,two graphs have 3 intersecrion  points are:A(1,0),B(−1,0),C(0,1)  3)Suppose P_1 (x_1 ,y_1 ),P_2 (x_2 ,y_2 ) and  M is the midpoint of P_1 P_2 .Then  OP_1 ^(→) =(x_1 ,y_1 ),OP_2 ^(→) =(x_2 ,y_2 )and  We have OM^(→) =OP_1 ^(→) +P_1 M^(→) =OP_2 ^(→) +P_2 M^(→)   ⇒OM^(→) =((OP_1 ^(→) +P_1 M^(→) +OP_2 ^(→) +P_2 M^(→) )/2)  =((OP_1 ^(→) +OP_2 ^(→) )/2)    (since P_1 M^(→) =−P_2 M^(→) )  Therefore,if denote M(x_M ,y_M )then  OM^(→) =(x_M ,y_M ) and by adding rule  for the vectors we get  x_M =((x_1 +x_2 )/2),y_M =((y_1 +y_2 )/2).That shows  that the point with coordintes  (((x_1 +x_2 )/2),((y_1 +y_2 )/2)) is the midpoint of  P_1 P_2   .Q3.  A)  a)F(x)=1−2x−x^2   The domain of F(x) is D_F =(−∞;+∞)  Range:we have 1−2x−x^2 =2−(x+1)^2 ≤2  ⇒−∞<F(x)≤2.Hence,R_F =(−∞;2]  b)y=(√(∣x∣))  D_y =(−∞;+∞).Since y=(√(∣x∣))≥0∀x  R_y =[0;+∞)  c)y=(√((1/x)−1)) .  The domain:we need must have x≠0  (1/x)−1≥0⇔((1−x)/x)≥0⇔0<x≤1.Hence  D_y =(0;1]  Range:(√((1/x)−1)) ≥0∀x∈D_y ⇒R_y =[0;+∞)  Hence,x is impossible (I)x<0  (II)x=0  (III)x>1  B)We need find the values x so that  (x/2)>1+(4/x)⇔(x/2)−1−(4/x)⇔((x^2 −2x−8)/(2x))>0  (((x+2)(x−4))/(2x))o>0⇔x∈(−2;0)∪(4;+∞)

Q11)2x+1x+212x+1x+210x1x+20x(2;1]2)(2y+1)2>94y2+4y8>0y2+y2>0(y1)(y+2)>0y(;2)(1;+)3)3x4∣>2(1)|x433x443x03x43x4223x23x6|Fromabovetabletwehavetwocasesi){x<4/323x>0{x<4/33x<2{x<4/3x<2/3x<2/3ii){x4/33x6>0{x4/3x>2x>2Combiningtwocaseswegetx(;2/3)(2;+)4)y2+2y3>0(y1)(y+3)>0y(;3)(1;+)Q2.1)Theequationofthelinepassthroughthepoint(0;5)and(4;2)isy5x0=2540=34y=34x+5Theequationofthelinepassthroughthepoint(0;2)and(3;6)isy+2x0=6+230=83y=83x2Theacuteanglebetweentwolinesisθthentanθ=∣k1k21+k1k2(1)wherek1=34,k2=83.Replaceinto(1)wegettanθ=∣83+341+(34)83∣=∣4112∣=4112θ73°412)Theintersectionpointoftwographsoftwofunctionsy=1x2andy=1x2isrootsofthesystem{y=1x2(1)y=1x2(2)1x2=1x2{x21(1x2)2=(1x2){x∣⩽1(3)1x2)[(1x2)1]=0(4)i)1x2=0x2=1x=±1y=0ii)1x21=0x2=0x=0y=1Thus,twographshave3intersecrionpointsare:A(1,0),B(1,0),C(0,1)3)SupposeP1(x1,y1),P2(x2,y2)andMisthemidpointofP1P2.ThenOP1=(x1,y1),OP2=(x2,y2)andWehaveOM=OP1+P1M=OP2+P2MOM=OP1+P1M+OP2+P2M2=OP1+OP22(sinceP1M=P2M)Therefore,ifdenoteM(xM,yM)thenOM=(xM,yM)andbyaddingruleforthevectorswegetxM=x1+x22,yM=y1+y22.Thatshowsthatthepointwithcoordintes(x1+x22,y1+y22)isthemidpointofP1P2.Q3.A)a)F(x)=12xx2ThedomainofF(x)isDF=(;+)Range:wehave12xx2=2(x+1)22<F(x)2.Hence,RF=(;2]b)y=xDy=(;+).Sincey=x0xRy=[0;+)c)y=1x1.Thedomain:weneedmusthavex01x101xx00<x1.HenceDy=(0;1]Range:1x10xDyRy=[0;+)Hence,xisimpossible(I)x<0(II)x=0(III)x>1B)Weneedfindthevaluesxsothatx2>1+4xx214xx22x82x>0(x+2)(x4)2xo>0x(2;0)(4;+)

Commented by mohammad17 last updated on 14/Sep/20

thank you sir

thankyousir

Commented by 1549442205PVT last updated on 15/Sep/20

You are welcome.

Youarewelcome.

Answered by Dwaipayan Shikari last updated on 14/Sep/20

f(x)=1−2x−x^2   f(x)=2−(1+x)^2   −∞<x<∞      (Domain)  Range 2≤f(x)<−∞

f(x)=12xx2f(x)=2(1+x)2<x<(Domain)Range2f(x)<

Terms of Service

Privacy Policy

Contact: info@tinkutara.com