All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 113600 by eric last updated on 14/Sep/20
Prouverqueβ(a,b)=Γ(a)Γ(b)Γ(a+b)=∫01xa−1(1−x)b−1dx
Answered by Dwaipayan Shikari last updated on 14/Sep/20
β(a,b)=∫01xa−1(1−x)b−1dxΓ(a)=∫0∞xa−1e−xdxΓ(b)=∫0∞yb−1e−ydyΓ(a+b)=∫0∞xa+b−1e−xdxΓ(a)Γ(b)=∫0∞∫0∞xa−1.yb−1e−(x+y)dydxx=vty=v(1−t)Γ(a)Γ(b)=∫0∞va+b−1e−v∫01ta−1(1−t)b−1dtΓ(a)Γ(b)=Γ(a+b)β(a,b)β(a,b)=Γ(a)Γ(b)Γ(a+b)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com