Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 113600 by eric last updated on 14/Sep/20

Prouver que  β(a,b)=((Γ(a)Γ(b))/(Γ(a+b)))=∫_0 ^1 x^(a−1) (1−x)^(b−1) dx

Prouverqueβ(a,b)=Γ(a)Γ(b)Γ(a+b)=01xa1(1x)b1dx

Answered by Dwaipayan Shikari last updated on 14/Sep/20

β(a,b)=∫_0 ^1 x^(a−1) (1−x)^(b−1) dx  Γ(a)=∫_0 ^∞ x^(a−1) e^(−x) dx  Γ(b)=∫_0 ^∞ y^(b−1) e^(−y) dy  Γ(a+b)=∫_0 ^∞ x^(a+b−1) e^(−x) dx  Γ(a)Γ(b)=∫_0 ^∞ ∫_0 ^∞ x^(a−1) .y^(b−1) e^(−(x+y)) dydx  x=vt  y=v(1−t)  Γ(a)Γ(b)=∫_0 ^∞ v^(a+b−1) e^(−v) ∫_0 ^1 t^(a−1) (1−t)^(b−1) dt  Γ(a)Γ(b)=Γ(a+b)β(a,b)  β(a,b)=((Γ(a)Γ(b))/(Γ(a+b)))

β(a,b)=01xa1(1x)b1dxΓ(a)=0xa1exdxΓ(b)=0yb1eydyΓ(a+b)=0xa+b1exdxΓ(a)Γ(b)=00xa1.yb1e(x+y)dydxx=vty=v(1t)Γ(a)Γ(b)=0va+b1ev01ta1(1t)b1dtΓ(a)Γ(b)=Γ(a+b)β(a,b)β(a,b)=Γ(a)Γ(b)Γ(a+b)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com