Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 113628 by mathmax by abdo last updated on 14/Sep/20

find ∫  (dx/((x+1)(√(x^2 −1))+(x−1)(√(x^2  +1))))

finddx(x+1)x21+(x1)x2+1

Answered by MJS_new last updated on 16/Sep/20

∫(dx/((x+1)(√(x^2 −1))+(x−1)(√(x^2 +1))))=  =∫(((x+1)(√(x^2 −1))−(x−1)(√(x^2 +1)))/(2(x−1)(2x^2 +x+1)))dx=  =(1/4)∫((√(x^2 −1))/(x−1))dx−(1/2)∫((√(x^2 +1))/(2x^2 +x+1))dx−(1/4)∫(((2x+1)(√(x^2 −1)))/(2x^2 +x+1))dx    (1/4)∫((√(x^2 −1))/(x−1))dx=     ( )       [t=x+(√(x^2 −1)) → dx=((√(x^2 −1))/(x+(√(x^2 −1))))dt]  =(1/8)∫(((t+1)^2 )/t^2 )dt=((t^2 −1)/(8t))+(1/4)ln t =  =(1/4)(√(x^2 −1))+(1/4)ln (x+(√(x^2 −1)))    −(1/2)∫((√(x^2 +1))/(2x^2 +x+1))dx=       [t=x+(√(x^2 +1)) → dx=((√(x^2 +1))/(x+(√(x^2 +1))))]  =−(1/4)∫(((t^2 +1)^2 )/(t(t^4 +t^3 −t+1)))dt  now we must decompose  t^4 +t^3 −t+1=(t^2 +αt+β)(t^2 +γt+δ)  α=((1+(√(5+4(√2))))/2)  β=((1+(√2))/2)+(((√(5+4(√2)))+(√(−35+28(√2))))/8)  γ=((1−(√(5+4(√2))))/2)  δ=((1+(√2))/2)−(((√(5+4(√2)))+(√(−35+28(√2))))/8)  I′m too tired now    −(1/4)∫(((2x+1)(√(x^2 −1)))/(2x^2 +x+1))dx=       [t=x+(√(x^2 −1)) → dx=((√(x^2 −1))/(x+(√(x^2 −1))))]  =−(1/8)∫(((t^2 −1)^2 (t^2 +t+1))/(t^2 (t^4 +t^3 +4t^2 +t+1)))dt  again to decompose  t^4 +t^3 +4t^2 +t+1=(t^2 +at+b)(t^2 +ct+d)  a=((1+(√(−11+8(√2))))/2)  b=((1+2(√2))/2)+(((√(−11+8(√2)))+(√(77+56(√2))))/8)  c=((1−(√(−11+8(√2))))/2)  d=((1+2(√2))/2)−(((√(−11+8(√2)))+(√(77+56(√2))))/8)  please continue if you need it, I go to bed...

dx(x+1)x21+(x1)x2+1==(x+1)x21(x1)x2+12(x1)(2x2+x+1)dx==14x21x1dx12x2+12x2+x+1dx14(2x+1)x212x2+x+1dx14x21x1dx=()[t=x+x21dx=x21x+x21dt]=18(t+1)2t2dt=t218t+14lnt==14x21+14ln(x+x21)12x2+12x2+x+1dx=[t=x+x2+1dx=x2+1x+x2+1]=14(t2+1)2t(t4+t3t+1)dtnowwemustdecomposet4+t3t+1=(t2+αt+β)(t2+γt+δ)α=1+5+422β=1+22+5+42+35+2828γ=15+422δ=1+225+42+35+2828Imtootirednow14(2x+1)x212x2+x+1dx=[t=x+x21dx=x21x+x21]=18(t21)2(t2+t+1)t2(t4+t3+4t2+t+1)dtagaintodecomposet4+t3+4t2+t+1=(t2+at+b)(t2+ct+d)a=1+11+822b=1+222+11+82+77+5628c=111+822d=1+22211+82+77+5628pleasecontinueifyouneedit,Igotobed...

Commented by Dwaipayan Shikari last updated on 16/Sep/20

(1/4)∫(√((x+1)/(x−1)))  (1/4)∫((x+1)/( (√(x^2 −1))))=(1/8)∫((2x)/( (√(x^2 −1))))+(1/4)∫(1/( (√(x^2 −1))))=(1/4)(√(x^2 −1))+(1/4)log(x+(√(x^2 −1)))

14x+1x114x+1x21=182xx21+141x21=14x21+14log(x+x21)

Commented by Tawa11 last updated on 06/Sep/21

great sir

greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com