Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 113651 by bemath last updated on 14/Sep/20

 lim_(x→0)  ((1/2)−(1/(1+e^(−x) ))).(1/(3x)) = ?

$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{1}+{e}^{−{x}} }\right).\frac{\mathrm{1}}{\mathrm{3}{x}}\:=\:? \\ $$

Answered by john santu last updated on 14/Sep/20

by Taylor series   let f(x) = (1/(1+e^(−x) )) =(1/2)+(x/4)−(x^3 /(48))+(x^5 /(480))−...  then lim_(x→0)  (((1/2)−(1/(1+e^(−x) )))/(3x)) =    lim_(x→0)  (((1/2)−((1/2)+(x/4)−(x^3 /(48))+...))/(3x)) =   lim_(x→0)  ((−(x/4)+(x^3 /(48))−...)/(3x)) = −(1/(12))

$${by}\:{Taylor}\:{series}\: \\ $$$${let}\:{f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}+{e}^{−{x}} }\:=\frac{\mathrm{1}}{\mathrm{2}}+\frac{{x}}{\mathrm{4}}−\frac{{x}^{\mathrm{3}} }{\mathrm{48}}+\frac{{x}^{\mathrm{5}} }{\mathrm{480}}−... \\ $$$${then}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{1}+{e}^{−{x}} }}{\mathrm{3}{x}}\:=\: \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{1}}{\mathrm{2}}−\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{{x}}{\mathrm{4}}−\frac{{x}^{\mathrm{3}} }{\mathrm{48}}+...\right)}{\mathrm{3}{x}}\:= \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\frac{{x}}{\mathrm{4}}+\frac{{x}^{\mathrm{3}} }{\mathrm{48}}−...}{\mathrm{3}{x}}\:=\:−\frac{\mathrm{1}}{\mathrm{12}} \\ $$

Answered by bobhans last updated on 14/Sep/20

 lim_(x→0)  (((1+e^(−x) −2)/(6x(1+e^(−x) )))) = lim_(x→0)  (((e^(−x) −1)/(6x(1+e^(−x) ))))   lim_(x→0) ( ((−e^(−x) )/(6+6e^(−x) −6xe^(−x) ))) = −(1/(12))  via L′Hopital rule

$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}+\mathrm{e}^{−\mathrm{x}} −\mathrm{2}}{\mathrm{6x}\left(\mathrm{1}+\mathrm{e}^{−\mathrm{x}} \right)}\right)\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{e}^{−\mathrm{x}} −\mathrm{1}}{\mathrm{6x}\left(\mathrm{1}+\mathrm{e}^{−\mathrm{x}} \right)}\right) \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\:\frac{−\mathrm{e}^{−\mathrm{x}} }{\mathrm{6}+\mathrm{6e}^{−\mathrm{x}} −\mathrm{6xe}^{−\mathrm{x}} }\right)\:=\:−\frac{\mathrm{1}}{\mathrm{12}} \\ $$$$\mathrm{via}\:\mathrm{L}'\mathrm{Hopital}\:\mathrm{rule} \\ $$

Answered by Dwaipayan Shikari last updated on 14/Sep/20

((1/2)−(e^x /(1+e^x )))(1/(3x))=((1+e^x −2e^x )/(2(1+e^x ))).(1/(3x))=(1/6)(((1−e^x )/(2.x)))=(1/(12))(((e^x −1)/(−x)))=−(1/(12))

$$\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{{e}^{{x}} }{\mathrm{1}+{e}^{{x}} }\right)\frac{\mathrm{1}}{\mathrm{3}{x}}=\frac{\mathrm{1}+{e}^{{x}} −\mathrm{2}{e}^{{x}} }{\mathrm{2}\left(\mathrm{1}+{e}^{{x}} \right)}.\frac{\mathrm{1}}{\mathrm{3}{x}}=\frac{\mathrm{1}}{\mathrm{6}}\left(\frac{\mathrm{1}−{e}^{{x}} }{\mathrm{2}.{x}}\right)=\frac{\mathrm{1}}{\mathrm{12}}\left(\frac{{e}^{{x}} −\mathrm{1}}{−{x}}\right)=−\frac{\mathrm{1}}{\mathrm{12}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com