Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 113682 by mohammad17 last updated on 14/Sep/20

Commented by mohammad17 last updated on 14/Sep/20

thank you sir

thankyousir

Answered by Dwaipayan Shikari last updated on 14/Sep/20

lim_(x→4) ((4−x)/(5−(√(x^2 +9))))  lim_(x→4) ((4−x)/(25−x^2 −9)).(5+(√(x^2 +9)))=((4−x)/((4−x)(4+x))).(5+5)=(5/4)

limx44x5x2+9limx44x25x29.(5+x2+9)=4x(4x)(4+x).(5+5)=54

Commented by mohammad17 last updated on 15/Sep/20

thank you sir

thankyousir

Answered by Dwaipayan Shikari last updated on 14/Sep/20

(y+x)^7 =sin^7 x e^(3y)   7log(y+x)=7log(sinx)+3y  (7/(y+x)).((dy/dx)+1)=7cotx+3(dy/dx)  ((7/(y+x))−3)(dy/dx)=7(cotx−(1/(y+x)))  (dy/dx)=((7(cotx−(1/(y+x))))/(((7/(y+x))−3)))

(y+x)7=sin7xe3y7log(y+x)=7log(sinx)+3y7y+x.(dydx+1)=7cotx+3dydx(7y+x3)dydx=7(cotx1y+x)dydx=7(cotx1y+x)(7y+x3)

Commented by mohammad17 last updated on 15/Sep/20

thank you sir

thankyousir

Answered by Mr.D.N. last updated on 14/Sep/20

    A) Prove that    cos^2 θ+sin^2 θ=1    Sol^n :     We know, trigonometric ratio:    sinθ = (p/h)  and cos θ= (b/h)    or, p= h sinθ    and  b= h cosθ   We know Pythagorous theorem,      p^2 +b^2 =h^2       or,   (h sinθ)^2 +(h cosθ)^2 = h^2        or,h^2  sin^2 θ +h^2  cos^2 θ = h^2      or,  h^2 (sin^2 θ + cos^2 θ) = h^2       or,  sin^2 θ + cos^2 θ  = (h^2 /h^2 )     ∴  sin^2 θ + cos^2 θ = 1    which is required proof.

A)Provethatcos2θ+sin2θ=1Soln:Weknow,trigonometricratio:sinθ=phandcosθ=bhor,p=hsinθandb=hcosθWeknowPythagoroustheorem,p2+b2=h2or,(hsinθ)2+(hcosθ)2=h2or,h2sin2θ+h2cos2θ=h2or,h2(sin2θ+cos2θ)=h2or,sin2θ+cos2θ=h2h2sin2θ+cos2θ=1whichisrequiredproof.

Commented by mohammad17 last updated on 15/Sep/20

thank you sir

thankyousir

Answered by Mr.D.N. last updated on 14/Sep/20

 Q5   1− By using first principle derivative prove    that the derivative of    tan x = sec^2 x     Sol^n :        We first principle derivative rules :     f^( ′)  (x) = _(h→0) ^(lim)  ((f(x+h)−f(x))/h)   Let,  f(x) = tan x    f(x+h)= tan(x+h)      (d/dx) (tan x) = _(h→0) ^( lim)   ((tan(x+h)−tan x)/h)      =  _(h→0) ^(lim)  (( ((sin(x+h))/(cos(x+h))) −((sin x)/(cos x)))/h)     = _(h→0) ^(lim)   (((cos x sin(x+h)−sinx cos(x+h))/(cos x cos(x+h)))/h)    = _(h→0) ^(lim)   ((cos x (sin x cos h+cosx sin h)−sinx(cos x cos h−sinx sin h))/(h cos x  cos(x+h)))   = _(h→0) ^(lim)  ((cos x sin x cos h + cos^2 x sin h−sin x cos x cos h +sin^2 x sin h)/(h cos x cos(x+h)))      = _(h→0) ^(lim)  ((cos^2 x sin h + sin^2 x sin h)/(h cos x cos(x+h)))    = _(h→0) ^(lim)   ((sin h (cos^2 x+sin^2 x))/(h cos x cos(x+h)))           { ∵ sin^2 x+cos^2 x=1}    = _(h→0) ^(lim)    ((sin h)/h)  ×  _(h→0) ^(lim)   (1/(cos x cos(x+h)))      { ∵ _(h→0) ^(lim)  ((sin h)/h)=1}   =  1× (1/(cos x .cos(x+0))) = (1/(cos x .cos x))= (1/(cos^2 x))   = sec^2 x     ∴  (d/dx) ( tan x ) = sec^2 x     proved//.

Q51Byusingfirstprinciplederivativeprovethatthederivativeoftanx=sec2xSoln:Wefirstprinciplederivativerules:f(x)=limh0f(x+h)f(x)hLet,f(x)=tanxf(x+h)=tan(x+h)ddx(tanx)=limh0tan(x+h)tanxh=limh0sin(x+h)cos(x+h)sinxcosxh=limh0cosxsin(x+h)sinxcos(x+h)cosxcos(x+h)h=limh0cosx(sinxcosh+cosxsinh)sinx(cosxcoshsinxsinh)hcosxcos(x+h)=limh0cosxsinxcosh+cos2xsinhsinxcosxcosh+sin2xsinhhcosxcos(x+h)=limh0cos2xsinh+sin2xsinhhcosxcos(x+h)=limh0sinh(cos2x+sin2x)hcosxcos(x+h){sin2x+cos2x=1}=limh0sinhh×limh01cosxcos(x+h){limh0sinhh=1}=1×1cosx.cos(x+0)=1cosx.cosx=1cos2x=sec2xddx(tanx)=sec2xproved//.

Commented by mohammad17 last updated on 15/Sep/20

thank you sir

thankyousir

Answered by Mr.D.N. last updated on 14/Sep/20

  2 −( b) if  f(x) = tan^(−1) (x/a) show that (dx/dy) = ((a^2 +x^2 )/a)       Sol^n :      given function:   y = tan^(−1) ((x/a))       D.w.r.to x      (dy/dx)= (1/(1+((x/a))^2 )).((1/a))    (dy/dx) = (1/((a^2 +x^2 )/a^2 )).((1/a) )⇒ (dy/dx)= (a^2 /(a^2 +x^2 )).(1/a)       (dy/dx) = (a/(a^2 +x^2 ))     a dx= (a^2 +x^2 )dy       ∴  (dx/dy) = ((a^2 +x^2 )/a)  proved //.

2(b)iff(x)=tan1xashowthatdxdy=a2+x2aSoln:givenfunction:y=tan1(xa)D.w.r.toxdydx=11+(xa)2.(1a)dydx=1a2+x2a2.(1a)dydx=a2a2+x2.1adydx=aa2+x2adx=(a2+x2)dydxdy=a2+x2aproved//.

Commented by mohammad17 last updated on 15/Sep/20

thank you sir

thankyousir

Answered by mathmax by abdo last updated on 14/Sep/20

A)cos^2 θ +sin^2 θ =(((e^(iθ)  +e^(−iθ) )/2))^2  +(((e^(iθ) −e^(−iθ) )/(2i)))^2   =(1/4)( e^(2iθ)  +2 +e^(−2iθ) )−(1/4)(e^(2iθ) −2 +e^(−2iθ) )  =(1/4){ e^(2iθ )  +2+e^(−2iθ) −e^(2iθ) +2−e^(−2iθ) } =(4/4) =1

A)cos2θ+sin2θ=(eiθ+eiθ2)2+(eiθeiθ2i)2=14(e2iθ+2+e2iθ)14(e2iθ2+e2iθ)=14{e2iθ+2+e2iθe2iθ+2e2iθ}=44=1

Commented by mohammad17 last updated on 15/Sep/20

thank you sir

thankyousir

Commented by mathmax by abdo last updated on 16/Sep/20

you are welcome

youarewelcome

Answered by mathmax by abdo last updated on 15/Sep/20

b) we have (√(5−2x^2 )) ≤f(x)≤(√(5−x^2 )) ⇒lim_(x→0) f(x) =(√5)  lim_(x→4)  ((4−x)/(5−(√(x^2  +9)))) =lim_(x→4)   (((4−x)(5+(√(x^2  +9))))/(25−x^2 −9))  =lim_(x→4)   (((4−x)(5+(√(x^2  +9))))/((4−x)(4+x))) =lim_(x→4)   ((5+(√(x^2  +9)))/(4+x))  =((5+5)/(4+4)) =((10)/8) =(5/4)

b)wehave52x2f(x)5x2limx0f(x)=5limx44x5x2+9=limx4(4x)(5+x2+9)25x29=limx4(4x)(5+x2+9)(4x)(4+x)=limx45+x2+94+x=5+54+4=108=54

Answered by mathmax by abdo last updated on 15/Sep/20

5) (d/dx)(tanx) =lim_(h→0)   ((tan(x+h)−tanx)/h)  =lim_(h→0)    ((((tanx +tanh)/(1−tanx .tanh))−tanx)/h)  =lim_(h→0)    ((tanx +tanh−tanx +tan^2 x tanh)/(h(1−tanx .tanh)))  =lim_(h→0)     ((tanh(1+tan^2 x))/(h(1−tanx .tanh))) =1+tan^2 x =(1/(cos^2 x))  (lim_(h→0)   ((tanh)/h)=1)

5)ddx(tanx)=limh0tan(x+h)tanxh=limh0tanx+tanh1tanx.tanhtanxh=limh0tanx+tanhtanx+tan2xtanhh(1tanx.tanh)=limh0tanh(1+tan2x)h(1tanx.tanh)=1+tan2x=1cos2x(limh0tanhh=1)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com