Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 113689 by Ar Brandon last updated on 14/Sep/20

Find p and q such that  p^2 +q^2 =101^2 . Where p, q∈Z   different from zero.

$$\mathrm{Find}\:\mathrm{p}\:\mathrm{and}\:\mathrm{q}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} =\mathrm{101}^{\mathrm{2}} .\:\mathrm{Where}\:\mathrm{p},\:\mathrm{q}\in\mathbb{Z}\: \\ $$$$\mathrm{different}\:\mathrm{from}\:\mathrm{zero}. \\ $$

Commented by Rasheed.Sindhi last updated on 14/Sep/20

p=20,q=99 or p=99,q=20

$${p}=\mathrm{20},{q}=\mathrm{99}\:{or}\:{p}=\mathrm{99},{q}=\mathrm{20} \\ $$

Answered by nimnim last updated on 14/Sep/20

If a,b and c are primitive pythagorean triples  then:−  Case(1) when a=odd,          b=(a^2 /2)−(1/2) and c=(a^2 /2)+(1/2)   Let a=13, c=((169)/2)+(1/2)=85≠101           a=15, c=((225)/2)+(1/2)=113≠101   Case(2) when a=even             b=((a/2))^2 −1 and c=((a/2))^2 +1   Let a=20, c=(((20)/2))^2 +1=101           b=(((20)/2))^2 −1=99  ⇒(p,q)=(20,99) or (99,20)

$$\mathrm{If}\:\mathrm{a},\mathrm{b}\:\mathrm{and}\:\mathrm{c}\:\mathrm{are}\:\mathrm{primitive}\:\mathrm{pythagorean}\:\mathrm{triples} \\ $$$$\mathrm{then}:− \\ $$$$\mathrm{Case}\left(\mathrm{1}\right)\:\mathrm{when}\:\mathrm{a}=\mathrm{odd}, \\ $$$$\:\:\:\:\:\:\:\:\mathrm{b}=\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{and}\:\mathrm{c}=\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:\mathrm{Let}\:\mathrm{a}=\mathrm{13},\:\mathrm{c}=\frac{\mathrm{169}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{85}\neq\mathrm{101} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{a}=\mathrm{15},\:\mathrm{c}=\frac{\mathrm{225}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{113}\neq\mathrm{101} \\ $$$$\:\mathrm{Case}\left(\mathrm{2}\right)\:\mathrm{when}\:\mathrm{a}=\mathrm{even} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{b}=\left(\frac{\mathrm{a}}{\mathrm{2}}\right)^{\mathrm{2}} −\mathrm{1}\:\mathrm{and}\:\mathrm{c}=\left(\frac{\mathrm{a}}{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{1} \\ $$$$\:\mathrm{Let}\:\mathrm{a}=\mathrm{20},\:\mathrm{c}=\left(\frac{\mathrm{20}}{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{1}=\mathrm{101} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{b}=\left(\frac{\mathrm{20}}{\mathrm{2}}\right)^{\mathrm{2}} −\mathrm{1}=\mathrm{99} \\ $$$$\Rightarrow\left(\mathrm{p},\mathrm{q}\right)=\left(\mathrm{20},\mathrm{99}\right)\:\mathrm{or}\:\left(\mathrm{99},\mathrm{20}\right) \\ $$$$ \\ $$

Answered by Rasheed.Sindhi last updated on 15/Sep/20

If m & n  are  any positive  integers with m>n  (m^2 −n^2 ,2mn,m^2 +n^2 ) is a  pathagorean triplet.  This rule is perfect,it can produce  all the pathagorean triplets and  that also means that for every  triplet there exist m & n which  can produce that triplet.  Here (p,q,101) is pathagorean  triplet so   m^2 +n^2 =101  or m^2 =101−n^2 . Clearly  n≤⌊(√(101)) ⌋,so we′ve to find such  n for which 101−n^2  is perfect  square between 1 and 10.  Hence n=1,10 are only proper   values and corresponding values  of m are 10 ,1.Since m>n so  (m,n)=(10,1)  p=m^2 −n^2 =10^2 −1^2 =99  q=2mn=2(10)(1)=20  Or  p=2mn=20  q=m^2 −n^2 =99  Since p,q∈Z  (p,q)=(20,99),(20,−99),                 (−20,99),(−20,−99),                (99,20),(99,−20),               (−99,20),(−99,−20).

$${If}\:{m}\:\&\:{n}\:\:{are}\:\:\boldsymbol{{any}}\:{positive} \\ $$$${integers}\:{with}\:{m}>{n} \\ $$$$\left({m}^{\mathrm{2}} −{n}^{\mathrm{2}} ,\mathrm{2}{mn},{m}^{\mathrm{2}} +{n}^{\mathrm{2}} \right)\:{is}\:{a} \\ $$$${pathagorean}\:{triplet}. \\ $$$$\mathcal{T}{his}\:{rule}\:{is}\:{perfect},{it}\:{can}\:{produce} \\ $$$$\boldsymbol{{all}}\:{the}\:{pathagorean}\:{triplets}\:{and} \\ $$$${that}\:{also}\:{means}\:{that}\:{for}\:\boldsymbol{{every}} \\ $$$${triplet}\:{there}\:{exist}\:{m}\:\&\:{n}\:{which} \\ $$$${can}\:{produce}\:{that}\:{triplet}. \\ $$$${Here}\:\left(\mathrm{p},\mathrm{q},\mathrm{101}\right)\:{is}\:{pathagorean} \\ $$$${triplet}\:{so}\:\:\:{m}^{\mathrm{2}} +{n}^{\mathrm{2}} =\mathrm{101} \\ $$$${or}\:{m}^{\mathrm{2}} =\mathrm{101}−{n}^{\mathrm{2}} .\:{Clearly} \\ $$$${n}\leqslant\lfloor\sqrt{\mathrm{101}}\:\rfloor,{so}\:{we}'{ve}\:{to}\:{find}\:{such} \\ $$$${n}\:{for}\:{which}\:\mathrm{101}−{n}^{\mathrm{2}} \:{is}\:{perfect} \\ $$$${square}\:{between}\:\mathrm{1}\:{and}\:\mathrm{10}. \\ $$$${Hence}\:{n}=\mathrm{1},\mathrm{10}\:{are}\:{only}\:{proper}\: \\ $$$${values}\:{and}\:{corresponding}\:{values} \\ $$$${of}\:{m}\:{are}\:\mathrm{10}\:,\mathrm{1}.{Since}\:{m}>{n}\:{so} \\ $$$$\left({m},{n}\right)=\left(\mathrm{10},\mathrm{1}\right) \\ $$$${p}={m}^{\mathrm{2}} −{n}^{\mathrm{2}} =\mathrm{10}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} =\mathrm{99} \\ $$$${q}=\mathrm{2}{mn}=\mathrm{2}\left(\mathrm{10}\right)\left(\mathrm{1}\right)=\mathrm{20} \\ $$$${Or} \\ $$$${p}=\mathrm{2}{mn}=\mathrm{20} \\ $$$${q}={m}^{\mathrm{2}} −{n}^{\mathrm{2}} =\mathrm{99} \\ $$$${Since}\:{p},{q}\in\mathbb{Z} \\ $$$$\left({p},{q}\right)=\left(\mathrm{20},\mathrm{99}\right),\left(\mathrm{20},−\mathrm{99}\right), \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(−\mathrm{20},\mathrm{99}\right),\left(−\mathrm{20},−\mathrm{99}\right), \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{99},\mathrm{20}\right),\left(\mathrm{99},−\mathrm{20}\right), \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\left(−\mathrm{99},\mathrm{20}\right),\left(−\mathrm{99},−\mathrm{20}\right). \\ $$

Answered by 1549442205PVT last updated on 16/Sep/20

We known that( a,b,c )is a triple of   Pythagor posirive integer numbers   where b^2 +c^2 =a^2   (a,b)=1if and only if c=uv,b=((u^2 −v^2 )/2),  a=((u^2 +v^2 )/2) where u,v are odd and coprime  .In the our problem p^2 +q^2 =101^2 (∗)  Since 101 is a prime,so (p,q)=1.  Hence,p=uv,q=((u^2 −v^2 )/2),((u^2 +v^2 )/2)=101  ⇔u^2 +v^2 =202⇒v<9<u≤13  i)If u=13 then v^2 =202−169=33⇒rejected  ii)If u=11 then v^2 =202−121=81=9^2   ⇒v=9⇒p=uv=99,q=((11^2 −9^2 )/2)=20  Since p,q  have  equal role in the  equation,we obtain   (p,q)∈{(99,20),(20,99).From this  follows (−p,q),(p,−q),(−p,−q)  also satisfying  second way:  If(p,q)is a root of (∗) then (−p,q),(p,−q)  and (−p,−q)are also roots of (∗).Hence  we just need find pairs (p,q)of positive  integer numbers of the equation(∗)  Since 101 is a prime number,p and q  are coprime( because suppose that   gcd(p,q)=d≠1 then p=md,q=nd with  (m,n)=1.Then p^2 +q^2 =101^2 (∗)  ⇔(m^2 +n^2 )d^2 =101^2 ⇒101⋮d which is  contradiction to the fact that 101 is prime)  .Furthermore,among two numbers p,q  must have one number is even and other  number is odd.Hence,WLOG suppose  p is odd and q is even.From that we have   (∗)⇔p^2 =(101+q)(101−q)  Put 101+q=m,101−q=n ⇒m>n,we  get p^2 =mn,q=((m−n)/2),101=((m+n)/2).  We see that m and n −coprime.  because of suppose the contrary, that  gcd(m,n)=d≠1.Then m=m_1 d,n=n_1 d  From that 101=((m+n)/2)=((m_1 +n_1 )/2)d  which  is impossible since 101 is prime  Therefore ,m and n are coprime.From  p^2 =mn and (m,n)=1 we infer   m=u^2 ,n=v^2 where u and v−coprime,  u>v >0 and are odd numbers.Finally,  we obtain  { ((p=uv(1))),((q=((u^2 −v^2 )/2)(2))),((101=((u^2 +v^2 )/2)(3))) :}  (3)⇔u^2 +v^2 =202⇒v<11≤u≤13  i)For u=13⇒v^2 =202−169=33⇒∄v∈Z  ii)For u=11⇒v^2 =202−121=81  ⇒v=9.Put into (1)(2) we get  (p,q)∈(99,20)and due to above note and the  equality of p and q in equation we get  (p,q)∈{99,20),(−99,20),(20,99),(20,−99),  (99,−20),(−99,−20),(−20,99),(−20,−99)}

$$\mathrm{We}\:\mathrm{known}\:\mathrm{that}\left(\:\mathrm{a},\mathrm{b},\mathrm{c}\:\right)\mathrm{is}\:\mathrm{a}\:\mathrm{triple}\:\mathrm{of}\: \\ $$$$\mathrm{Pythagor}\:\mathrm{posirive}\:\mathrm{integer}\:\mathrm{numbers}\: \\ $$$$\mathrm{where}\:\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} =\mathrm{a}^{\mathrm{2}} \\ $$$$\left(\mathrm{a},\mathrm{b}\right)=\mathrm{1if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if}\:\mathrm{c}=\mathrm{uv},\mathrm{b}=\frac{\mathrm{u}^{\mathrm{2}} −\mathrm{v}^{\mathrm{2}} }{\mathrm{2}}, \\ $$$$\mathrm{a}=\frac{\mathrm{u}^{\mathrm{2}} +\mathrm{v}^{\mathrm{2}} }{\mathrm{2}}\:\mathrm{where}\:\mathrm{u},\mathrm{v}\:\mathrm{are}\:\mathrm{odd}\:\mathrm{and}\:\mathrm{coprime} \\ $$$$.\mathrm{In}\:\mathrm{the}\:\mathrm{our}\:\mathrm{problem}\:\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} =\mathrm{101}^{\mathrm{2}} \left(\ast\right) \\ $$$$\mathrm{Since}\:\mathrm{101}\:\mathrm{is}\:\mathrm{a}\:\mathrm{prime},\mathrm{so}\:\left(\mathrm{p},\mathrm{q}\right)=\mathrm{1}. \\ $$$$\mathrm{Hence},\mathrm{p}=\mathrm{uv},\mathrm{q}=\frac{\mathrm{u}^{\mathrm{2}} −\mathrm{v}^{\mathrm{2}} }{\mathrm{2}},\frac{\mathrm{u}^{\mathrm{2}} +\mathrm{v}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{101} \\ $$$$\Leftrightarrow\mathrm{u}^{\mathrm{2}} +\mathrm{v}^{\mathrm{2}} =\mathrm{202}\Rightarrow\mathrm{v}<\mathrm{9}<\mathrm{u}\leqslant\mathrm{13} \\ $$$$\left.\mathrm{i}\right)\mathrm{If}\:\mathrm{u}=\mathrm{13}\:\mathrm{then}\:\mathrm{v}^{\mathrm{2}} =\mathrm{202}−\mathrm{169}=\mathrm{33}\Rightarrow\mathrm{rejected} \\ $$$$\left.\mathrm{ii}\right)\mathrm{If}\:\mathrm{u}=\mathrm{11}\:\mathrm{then}\:\mathrm{v}^{\mathrm{2}} =\mathrm{202}−\mathrm{121}=\mathrm{81}=\mathrm{9}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{v}=\mathrm{9}\Rightarrow\mathrm{p}=\mathrm{uv}=\mathrm{99},\mathrm{q}=\frac{\mathrm{11}^{\mathrm{2}} −\mathrm{9}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{20} \\ $$$$\mathrm{Since}\:\mathrm{p},\mathrm{q}\:\:\mathrm{have}\:\:\mathrm{equal}\:\mathrm{role}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{equation},\mathrm{we}\:\mathrm{obtain}\: \\ $$$$\left(\boldsymbol{\mathrm{p}},\boldsymbol{\mathrm{q}}\right)\in\left\{\left(\mathrm{99},\mathrm{20}\right),\left(\mathrm{20},\mathrm{99}\right).\mathrm{From}\:\mathrm{this}\right. \\ $$$$\mathrm{follows}\:\left(−\mathrm{p},\mathrm{q}\right),\left(\mathrm{p},−\mathrm{q}\right),\left(−\mathrm{p},−\mathrm{q}\right) \\ $$$$\mathrm{also}\:\mathrm{satisfying} \\ $$$$\boldsymbol{\mathrm{second}}\:\boldsymbol{\mathrm{way}}: \\ $$$$\mathrm{If}\left(\mathrm{p},\mathrm{q}\right)\mathrm{is}\:\mathrm{a}\:\mathrm{root}\:\mathrm{of}\:\left(\ast\right)\:\mathrm{then}\:\left(−\mathrm{p},\mathrm{q}\right),\left(\mathrm{p},−\mathrm{q}\right) \\ $$$$\mathrm{and}\:\left(−\mathrm{p},−\mathrm{q}\right)\mathrm{are}\:\mathrm{also}\:\mathrm{roots}\:\mathrm{of}\:\left(\ast\right).\mathrm{Hence} \\ $$$$\mathrm{we}\:\mathrm{just}\:\mathrm{need}\:\mathrm{find}\:\mathrm{pairs}\:\left(\mathrm{p},\mathrm{q}\right)\mathrm{of}\:\mathrm{positive} \\ $$$$\mathrm{integer}\:\mathrm{numbers}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\left(\ast\right) \\ $$$$\mathrm{Since}\:\mathrm{101}\:\mathrm{is}\:\mathrm{a}\:\mathrm{prime}\:\mathrm{number},\mathrm{p}\:\mathrm{and}\:\mathrm{q} \\ $$$$\mathrm{are}\:\mathrm{coprime}\left(\:\mathrm{because}\:\mathrm{suppose}\:\mathrm{that}\:\right. \\ $$$$\mathrm{gcd}\left(\mathrm{p},\mathrm{q}\right)=\mathrm{d}\neq\mathrm{1}\:\mathrm{then}\:\mathrm{p}=\mathrm{md},\mathrm{q}=\mathrm{nd}\:\mathrm{with} \\ $$$$\left(\mathrm{m},\mathrm{n}\right)=\mathrm{1}.\mathrm{Then}\:\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} =\mathrm{101}^{\mathrm{2}} \left(\ast\right) \\ $$$$\Leftrightarrow\left(\mathrm{m}^{\mathrm{2}} +\mathrm{n}^{\mathrm{2}} \right)\mathrm{d}^{\mathrm{2}} =\mathrm{101}^{\mathrm{2}} \Rightarrow\mathrm{101}\vdots\mathrm{d}\:\mathrm{which}\:\mathrm{is} \\ $$$$\left.\mathrm{contradiction}\:\mathrm{to}\:\mathrm{the}\:\mathrm{fact}\:\mathrm{that}\:\mathrm{101}\:\mathrm{is}\:\mathrm{prime}\right) \\ $$$$.\mathrm{Furthermore},\mathrm{among}\:\mathrm{two}\:\mathrm{numbers}\:\mathrm{p},\mathrm{q} \\ $$$$\mathrm{must}\:\mathrm{have}\:\mathrm{one}\:\mathrm{number}\:\mathrm{is}\:\mathrm{even}\:\mathrm{and}\:\mathrm{other} \\ $$$$\mathrm{number}\:\mathrm{is}\:\mathrm{odd}.\mathrm{Hence},\mathrm{WLOG}\:\mathrm{suppose} \\ $$$$\mathrm{p}\:\mathrm{is}\:\mathrm{odd}\:\mathrm{and}\:\mathrm{q}\:\mathrm{is}\:\mathrm{even}.\mathrm{From}\:\mathrm{that}\:\mathrm{we}\:\mathrm{have} \\ $$$$\:\left(\ast\right)\Leftrightarrow\mathrm{p}^{\mathrm{2}} =\left(\mathrm{101}+\mathrm{q}\right)\left(\mathrm{101}−\mathrm{q}\right) \\ $$$$\mathrm{Put}\:\mathrm{101}+\mathrm{q}=\mathrm{m},\mathrm{101}−\mathrm{q}=\mathrm{n}\:\Rightarrow\mathrm{m}>\mathrm{n},\mathrm{we} \\ $$$$\mathrm{get}\:\mathrm{p}^{\mathrm{2}} =\mathrm{mn},\mathrm{q}=\frac{\mathrm{m}−\mathrm{n}}{\mathrm{2}},\mathrm{101}=\frac{\mathrm{m}+\mathrm{n}}{\mathrm{2}}. \\ $$$$\mathrm{We}\:\mathrm{see}\:\mathrm{that}\:\mathrm{m}\:\mathrm{and}\:\mathrm{n}\:−\mathrm{coprime}. \\ $$$$\mathrm{because}\:\mathrm{of}\:\mathrm{suppose}\:\mathrm{the}\:\mathrm{contrary},\:\mathrm{that} \\ $$$$\mathrm{gcd}\left(\mathrm{m},\mathrm{n}\right)=\mathrm{d}\neq\mathrm{1}.\mathrm{Then}\:\mathrm{m}=\mathrm{m}_{\mathrm{1}} \mathrm{d},\mathrm{n}=\mathrm{n}_{\mathrm{1}} \mathrm{d} \\ $$$$\mathrm{From}\:\mathrm{that}\:\mathrm{101}=\frac{\mathrm{m}+\mathrm{n}}{\mathrm{2}}=\frac{\mathrm{m}_{\mathrm{1}} +\mathrm{n}_{\mathrm{1}} }{\mathrm{2}}\mathrm{d} \\ $$$$\mathrm{which}\:\:\mathrm{is}\:\mathrm{impossible}\:\mathrm{since}\:\mathrm{101}\:\mathrm{is}\:\mathrm{prime} \\ $$$$\mathrm{Therefore}\:,\mathrm{m}\:\mathrm{and}\:\mathrm{n}\:\mathrm{are}\:\mathrm{coprime}.\mathrm{From} \\ $$$$\mathrm{p}^{\mathrm{2}} =\mathrm{mn}\:\mathrm{and}\:\left(\mathrm{m},\mathrm{n}\right)=\mathrm{1}\:\mathrm{we}\:\mathrm{infer}\: \\ $$$$\mathrm{m}=\mathrm{u}^{\mathrm{2}} ,\mathrm{n}=\mathrm{v}^{\mathrm{2}} \mathrm{where}\:\mathrm{u}\:\mathrm{and}\:\mathrm{v}−\mathrm{coprime}, \\ $$$$\mathrm{u}>\mathrm{v}\:>\mathrm{0}\:\mathrm{and}\:\mathrm{are}\:\mathrm{odd}\:\mathrm{numbers}.\mathrm{Finally}, \\ $$$$\mathrm{we}\:\mathrm{obtain}\:\begin{cases}{\mathrm{p}=\mathrm{uv}\left(\mathrm{1}\right)}\\{\mathrm{q}=\frac{\mathrm{u}^{\mathrm{2}} −\mathrm{v}^{\mathrm{2}} }{\mathrm{2}}\left(\mathrm{2}\right)}\\{\mathrm{101}=\frac{\mathrm{u}^{\mathrm{2}} +\mathrm{v}^{\mathrm{2}} }{\mathrm{2}}\left(\mathrm{3}\right)}\end{cases} \\ $$$$\left(\mathrm{3}\right)\Leftrightarrow\mathrm{u}^{\mathrm{2}} +\mathrm{v}^{\mathrm{2}} =\mathrm{202}\Rightarrow\mathrm{v}<\mathrm{11}\leqslant\mathrm{u}\leqslant\mathrm{13} \\ $$$$\left.\mathrm{i}\right)\mathrm{For}\:\mathrm{u}=\mathrm{13}\Rightarrow\mathrm{v}^{\mathrm{2}} =\mathrm{202}−\mathrm{169}=\mathrm{33}\Rightarrow\nexists\mathrm{v}\in\mathbb{Z} \\ $$$$\left.\mathrm{ii}\right)\mathrm{For}\:\mathrm{u}=\mathrm{11}\Rightarrow\mathrm{v}^{\mathrm{2}} =\mathrm{202}−\mathrm{121}=\mathrm{81} \\ $$$$\Rightarrow\mathrm{v}=\mathrm{9}.\mathrm{Put}\:\mathrm{into}\:\left(\mathrm{1}\right)\left(\mathrm{2}\right)\:\mathrm{we}\:\mathrm{get} \\ $$$$\left(\mathrm{p},\mathrm{q}\right)\in\left(\mathrm{99},\mathrm{20}\right)\mathrm{and}\:\mathrm{due}\:\mathrm{to}\:\mathrm{above}\:\mathrm{note}\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{equality}\:\mathrm{of}\:\mathrm{p}\:\mathrm{and}\:\mathrm{q}\:\mathrm{in}\:\mathrm{equation}\:\mathrm{we}\:\mathrm{get} \\ $$$$\left(\mathrm{p},\mathrm{q}\right)\in\left\{\mathrm{99},\mathrm{20}\right),\left(−\mathrm{99},\mathrm{20}\right),\left(\mathrm{20},\mathrm{99}\right),\left(\mathrm{20},−\mathrm{99}\right), \\ $$$$\left.\left(\mathrm{99},−\mathrm{20}\right),\left(−\mathrm{99},−\mathrm{20}\right),\left(−\mathrm{20},\mathrm{99}\right),\left(−\mathrm{20},−\mathrm{99}\right)\right\} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com