Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 113714 by mathdave last updated on 14/Sep/20

Answered by Olaf last updated on 15/Sep/20

I_n  = ∫_0 ^1 ((x^n ln(1+x))/(1+x))dx  I_0  = ∫_0 ^1 ((ln(1+x)dx)/(1+x))  I_0  = [(1/2)ln^2 (1+x)]_0 ^1  = (1/2)ln^2 2  I_(n+1) +I_n  = ∫_0 ^1 ((x^(n+1) +x^n )/(1+x))ln(1+x)dx  I_(n+1) +I_n  = ∫_0 ^1 x^n ln(1+x)dx  (1/(1+x)) = Σ_(k=0) ^∞ (−1)^k x^k   ln(1+x) = Σ_(k=0) ^∞ (((−1)^k x^(k+1) )/(k+1)), ∣x∣<1  I_(n+1) +I_n  = ∫_0 ^1 x^n Σ_(k=0) ^∞ (((−1)^k x^(k+1) )/(k+1))dx  I_(n+1) +I_n  = ∫_0 ^1 Σ_(k=0) ^∞ (((−1)^k x^(n+k+1) )/(k+1))dx  I_(n+1) +I_n  = [Σ_(k=0) ^∞ (((−1)^k x^(n+k+1) )/((k+1)(n+k+1)))]_0 ^1   I_(n+1) +I_n  = Σ_(k=0) ^∞ (((−1)^k )/((k+1)(n+k+1)))  (1/((k+1)(n+k+1))) = (1/n)((1/(k+1))−(1/(n+k+1)))  I_(n+1) +I_n  = (1/n)Σ_(k=0) ^∞ (−1)^k ((1/(k+1))−(1/(n+k+1)))  ...

$$\mathrm{I}_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{n}} \mathrm{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}}{dx} \\ $$$$\mathrm{I}_{\mathrm{0}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}+{x}\right){dx}}{\mathrm{1}+{x}} \\ $$$$\mathrm{I}_{\mathrm{0}} \:=\:\left[\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \mathrm{2} \\ $$$$\mathrm{I}_{{n}+\mathrm{1}} +\mathrm{I}_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{n}+\mathrm{1}} +{x}^{{n}} }{\mathrm{1}+{x}}\mathrm{ln}\left(\mathrm{1}+{x}\right){dx} \\ $$$$\mathrm{I}_{{n}+\mathrm{1}} +\mathrm{I}_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} \mathrm{ln}\left(\mathrm{1}+{x}\right){dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{x}}\:=\:\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{k}} {x}^{{k}} \\ $$$$\mathrm{ln}\left(\mathrm{1}+{x}\right)\:=\:\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} {x}^{{k}+\mathrm{1}} }{{k}+\mathrm{1}},\:\mid{x}\mid<\mathrm{1} \\ $$$$\mathrm{I}_{{n}+\mathrm{1}} +\mathrm{I}_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} \underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} {x}^{{k}+\mathrm{1}} }{{k}+\mathrm{1}}{dx} \\ $$$$\mathrm{I}_{{n}+\mathrm{1}} +\mathrm{I}_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} {x}^{{n}+{k}+\mathrm{1}} }{{k}+\mathrm{1}}{dx} \\ $$$$\mathrm{I}_{{n}+\mathrm{1}} +\mathrm{I}_{{n}} \:=\:\left[\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} {x}^{{n}+{k}+\mathrm{1}} }{\left({k}+\mathrm{1}\right)\left({n}+{k}+\mathrm{1}\right)}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\mathrm{I}_{{n}+\mathrm{1}} +\mathrm{I}_{{n}} \:=\:\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} }{\left({k}+\mathrm{1}\right)\left({n}+{k}+\mathrm{1}\right)} \\ $$$$\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)\left({n}+{k}+\mathrm{1}\right)}\:=\:\frac{\mathrm{1}}{{n}}\left(\frac{\mathrm{1}}{{k}+\mathrm{1}}−\frac{\mathrm{1}}{{n}+{k}+\mathrm{1}}\right) \\ $$$$\mathrm{I}_{{n}+\mathrm{1}} +\mathrm{I}_{{n}} \:=\:\frac{\mathrm{1}}{{n}}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{k}} \left(\frac{\mathrm{1}}{{k}+\mathrm{1}}−\frac{\mathrm{1}}{{n}+{k}+\mathrm{1}}\right) \\ $$$$... \\ $$

Commented by mathdave last updated on 15/Sep/20

well done but wait ooo if integrate   ∫_0 ^1 x^(k+n+1) dx this supposed to gave  (x^(k+n+2) /(k+n+2))

$${well}\:{done}\:{but}\:{wait}\:{ooo}\:{if}\:{integrate}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{k}+{n}+\mathrm{1}} {dx}\:{this}\:{supposed}\:{to}\:{gave} \\ $$$$\frac{{x}^{{k}+{n}+\mathrm{2}} }{{k}+{n}+\mathrm{2}} \\ $$

Commented by Tawa11 last updated on 06/Sep/21

great sir

$$\mathrm{great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com