All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 113742 by bemath last updated on 15/Sep/20
limx→0(1+x)1x−e−ex2x2=?
Answered by bobhans last updated on 15/Sep/20
L=limx→0(1+x)1x−e−ex2x2lety=(1+x)1x→lny=1xln(1+x)lny=1x(x−x22+x33−x44+...)lny=1−x2+x23−x34+...y=e(1−x2+x23−x34+...)L=limx→0e(1−x2+x23−x34+...)−e−ex2x2L=limx→0e(1+(−x2+x23−...)+12!(−x2+x23−...)2+...)x2L=limx→0(e+ex2+11ex224+...)−e−ex2x2L=limx→011ex224x2=11e24
Answered by mathmax by abdo last updated on 16/Sep/20
letf(x)=(1+x)1x−e−ex2x2⇒f(x)=e1xln(1+x)−e−ex2x2wehaveddxln(1+x)=11+x=1−x+x2+o(x3)⇒ln(1+x)=x−x22+x33+o(x4)⇒ln(1+x)x=1−x2+x23+o(x3)⇒e1xln(1+x)=ee−x2+x23+o(x3)∼e(1−x2+x23)=e−ex2+ex23⇒e1xln(1+x)−e+ex2∼ex23⇒f(x)∼e3⇒limx→0f(x)=e3ithinktheQislimx→0(1+x)1x−e+ex2x2...!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com