Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 113742 by bemath last updated on 15/Sep/20

 lim_(x→0)  (((1+x)^(1/x) −e−((ex)/2))/x^2 ) =?

limx0(1+x)1xeex2x2=?

Answered by bobhans last updated on 15/Sep/20

L = lim_(x→0)  (((1+x)^(1/x) −e−((ex)/2))/x^2 )   let y = (1+x)^(1/x)  →ln y =(1/x)ln (1+x)   ln y = (1/x)(x−(x^2 /2)+(x^3 /3)−(x^4 /4)+...)   ln y = 1−(x/2)+(x^2 /3)−(x^3 /4)+...         y = e^((1−(x/2)+(x^2 /3)−(x^3 /4)+...))   L = lim_(x→0)  ((e^((1−(x/2)+(x^2 /3)−(x^3 /4)+...)) −e−((ex)/2))/x^2 )  L = lim_(x→0)  ((e(1+(−(x/2)+(x^2 /3)−...)+(1/(2!))(−(x/2)+(x^2 /3)−...)^2 +...))/x^2 )  L = lim_(x→0)  (((e+((ex)/2)+((11ex^2 )/(24))+...)−e−((ex)/2))/x^2 )  L= lim_(x→0)  (((11ex^2 )/(24))/x^2 ) = ((11e)/(24))

L=limx0(1+x)1xeex2x2lety=(1+x)1xlny=1xln(1+x)lny=1x(xx22+x33x44+...)lny=1x2+x23x34+...y=e(1x2+x23x34+...)L=limx0e(1x2+x23x34+...)eex2x2L=limx0e(1+(x2+x23...)+12!(x2+x23...)2+...)x2L=limx0(e+ex2+11ex224+...)eex2x2L=limx011ex224x2=11e24

Answered by mathmax by abdo last updated on 16/Sep/20

let  f(x) =(((1+x)^(1/x) −e−((ex)/2))/x^2 ) ⇒f(x) =((e^((1/x)ln(1+x)) −e−((ex)/2))/x^2 )  we have (d/dx)ln(1+x) =(1/(1+x)) =1−x +x^2  +o(x^3 ) ⇒  ln(1+x) =x−(x^2 /2) +(x^3 /3) +o(x^4 ) ⇒((ln(1+x))/x) =1−(x/2)+(x^2 /3) +o(x^3 ) ⇒  e^((1/x)ln(1+x))  =e e^(−(x/2)+(x^2 /3)+o(x^3 ))  ∼e (1−(x/2)+(x^2 /3)) =e−((ex)/2)+((ex^2 )/3) ⇒  e^((1/x)ln(1+x)) −e+((ex)/2) ∼ ((ex^2 )/3) ⇒f(x) ∼(e/3) ⇒lim_(x→0)   f(x)=(e/3)  i think the Q is lim_(x→0)     (((1+x)^(1/x) −e+((ex)/2))/x^2 ) ...!

letf(x)=(1+x)1xeex2x2f(x)=e1xln(1+x)eex2x2wehaveddxln(1+x)=11+x=1x+x2+o(x3)ln(1+x)=xx22+x33+o(x4)ln(1+x)x=1x2+x23+o(x3)e1xln(1+x)=eex2+x23+o(x3)e(1x2+x23)=eex2+ex23e1xln(1+x)e+ex2ex23f(x)e3limx0f(x)=e3ithinktheQislimx0(1+x)1xe+ex2x2...!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com