All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 113745 by Algoritm last updated on 15/Sep/20
Answered by MJS_new last updated on 15/Sep/20
2cos2x−cosx6−cos2x−4sinx==−cosxsin2x−4sinx+5+2(2cos2x−1)sin2x−4sinx+5−∫cosxsin2x−4sinx+5dx=[t=2+sinx→dx=dtcosx]=−∫dtt2+1=−arctant==−arctan(2+sinx)2∫2cos2x−1sin2x−4sinx+5dx=[t=tanx+1+tan2x→dx=cos2x1+sinxdt](x=arctant2−12t)=−2∫t4−6t2+1(t2+1)(t4+4t2+5)dt==−2∫t4−6t2+1(t2+1)(t2−−4+25t+5)(t2+−4+25t+5)dtnowdecomposeandusetheformulasfor∫ax+bx2+cx+ddx.Ithinkyoushouldstarttoworkforyourselfnow...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com